Numerical methods for weakly compressible two-phase flow
 Recent advances

Keh-Ming Shyue

Institute of Applied Mathematical Sciences
National Taiwan University

Scientific example 1: Wave-breaking problem

Problem setup

- Rightward-going solitary water wave travels towards a step-like reef on right

Wave-breaking problem: Schlieren-type image

$$
t=1.20 \mathrm{~s}
$$

1.35 s

Wave-breaking problem: Schlieren-type image

$$
t=1.60 \mathrm{~s}
$$

$$
t=1.80 \mathrm{~s}
$$

Wave-breaking problem: Gauge diagnosis

Gauge P2

Gauge P4

Wave-breaking problem: CPU time Diagnosis

Method	Mesh	CPU time	CPU type
Compressible 1	400×50	6756	AMD
	800×100	55253	Opteron 2220
	1600×200	476429	2.8 GHz
Compressible 2	1500×200	172800	Alpha 666 MHz
Pre compressible	1500×200	146400	Intel Xeon 3.0 GHz
Incompressible	1200×200	273600	Itanium 1.4 GHz

Scientific example 2: Water column collapse

Problem setup

- Water column dimension: $a \times 2 a(a=0.06 \mathrm{~m})$
- Gravity is directed downward

Results shown below are run with 200×60 grid

Water column collapse: Pseudo-color plot

$$
t=0.066 \mathrm{~s}
$$

Water column collapse: Pseudo-color plot

$$
t=0.164 \mathrm{~s}
$$

Water column collapse: Pseudo-color plot

$$
t=0.281 \mathrm{~s}
$$

Column collapse: Wave front diagnosis (Meshes)

Water column height

Leading water front position

Column collapse: Wave front diagnosis (Methods)

Water column height

Leading water front position

Column collapse: CPU timing diagnosis

Method	Mesh	CPU time	CPU type
Compressible solver	100×30	492	AMD
	200×60	3782	Opteron 2220
	400×120	31783	2.8 GHz
Precond. compressible	100×30	352	Intel Core 2
	200×60	2453	Duo 3.0GHz
	400×120	21780	
Incompressible solver	200×60	9804	Intel Pentium 4 Mach-uniform solver
	200×60	129	Intel Core i7 2.2GHz

Water column collapse: Large time solution

$$
t=0.5 \mathrm{~s}
$$

Water column collapse: Large time solution

$$
t=0.7 \mathrm{~s}
$$

$$
t=0.8 \mathrm{~s}
$$

Water column collapse: Large time solution

$$
t=1.0 \mathrm{~s}
$$

Computed solutions becomes chaotic at later time

Is this physically correct or simply numerical artifact ? (Issues to be resolved as compared with laboratory experiments, for example, for numerical validation)

Liquid-falling problem

$t=0 \mathrm{~s}$

Liquid-falling problem

$t=0.04 \mathrm{~s}$

Liquid-falling problem

$t=0.08 \mathrm{~s}$

Liquid-falling problem

$\mathrm{t}=0.12 \mathrm{~s}$

Liquid-falling problem

$t=0.16 \mathrm{~s}$

Liquid-falling problem

$t=0.2 \mathrm{~s}$

Liquid-falling problem

$$
\mathrm{t}=0.24 \mathrm{~s}
$$

Liquid-falling problem

$t=0.28 \mathrm{~s}$

Liquid-falling problem

$\mathrm{t}=0.32 \mathrm{~s}$

Liquid-falling problem

$t=0.36 \mathrm{~s}$

Liquid-falling problem

$\mathrm{t}=0.4 \mathrm{~s}$

Liquid-falling problem

$\mathrm{t}=0.44 \mathrm{~s}$

Liquid-falling problem

$$
\mathrm{t}=0.48 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=0.52 \mathrm{~s}
$$

Liquid-falling problem

$\mathrm{t}=0.56 \mathrm{~s}$

Liquid-falling problem

$$
\mathrm{t}=0.6 \mathrm{~s}
$$

Liquid-falling problem

$\mathrm{t}=0.64 \mathrm{~s}$

Liquid-falling problem

$$
\mathrm{t}=0.68 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=0.72 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=0.76 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=0.8 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=0.84 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=0.88 \mathrm{~s}
$$

Liquid-falling problem

$\mathrm{t}=0.92 \mathrm{~s}$

Liquid-falling problem

$$
\mathrm{t}=0.96 \mathrm{~s}
$$

Liquid-falling problem
$\mathrm{t}=1 \mathrm{~s}$

Liquid-falling problem

$$
\mathrm{t}=1.04 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=1.08 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=1.12 \mathrm{~s}
$$

Liquid-falling problem

$t=1.16 \mathrm{~s}$

Liquid-falling problem

$$
\mathrm{t}=1.2 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=1.24 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=1.28 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=1.32 \mathrm{~s}
$$

Liquid-falling problem

$\mathrm{t}=1.36 \mathrm{~s}$

Liquid-falling problem

$$
\mathrm{t}=1.4 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=1.44 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=1.48 \mathrm{~s}
$$

Liquid-falling problem

$$
\mathrm{t}=1.52 \mathrm{~s}
$$

Liquid-falling problem

$\mathrm{t}=1.56 \mathrm{~s}$

Liquid-falling problem: Large time

$$
\mathrm{t}=2 \mathrm{~s}
$$

Weakly compressible 2-phase flow: Overview

Challenges for classical compressible flow solver

- Accuracy (due to incorrect pressure fluctuations)
- Efficiency (due to small time step)

Existing methods for modeling low Mach flow

1. Density-based approach

- low Mach preconditioning for accuracy
- Dual-time or implicit for efficiency

2. Pressure-based approach

- Pressure Poisson solver for accuracy
- Particle-velocity based advection for efficiency

3. Multiscale asymptotic-based approximations

Talk outline

1. Compressible 1-phase flow: Overview

- Model
- Euler's equations
- Numerics
- Density-based method
- Pressure-based method

2. Compressible 2-phase flow

- Model
- Homogeneous relaxation models
- Numerics
- Density-based method
- Pressure-based method

3. Future perspectives

Compressible gas dynamics: 1 phase

Compressible Euler's equations in conservation form is

$$
\begin{align*}
& \partial_{t} \rho+\nabla \cdot(\rho \vec{u})=0 \\
& \partial_{t}(\rho \vec{u})+\nabla \cdot(\rho \vec{u} \otimes \vec{u})+\nabla p=0 \tag{1}\\
& \partial_{t}(\rho E)+\nabla \cdot(\rho E \vec{u}+p \vec{u})=0
\end{align*}
$$

Assume fluid constitutive law satisfies stiffened gas EOS

$$
\begin{equation*}
p(\rho, e)=(\gamma-1) \rho e-\gamma p_{\infty} \tag{2}
\end{equation*}
$$

- For air $\gamma=1.4, p_{\infty}=0$
- For water $\gamma=4.4, p_{\infty}=6.0 \times 10^{8} \mathrm{~Pa}$
- For stone $\gamma=1.66, p_{\infty}=1.12 \times 10^{10} \mathrm{~Pa}$

Model is hyperbolic with information propagating at speeds \vec{u}, $\vec{u}-c \& \vec{u}+c ; c$ is sound speed

Low Mach number flow: Explicit method

For low speed flows, when effect of sound waves is unimportant to overall solution, numerical simulation based on (1) with explict time-discretization ${ }^{1}$ is inefficient

This is because for stability explicit method is subject to CFL (Courant-Friedrichs-Lewy) time step constraint

$$
\Delta t \leq \min \left(\frac{\Delta x}{|u|+c}\right)=\min \left(\frac{\Delta x}{c(M+1)}\right), \quad M=\frac{|u|}{c}
$$

For very low Mach number flow, $M \ll 1$, this is

$$
\Delta t \sim \frac{\Delta x}{c} \quad \Longrightarrow \quad \Delta x \sim|u| \frac{c}{|u|} \Delta t=\frac{1}{M}|u| \Delta t
$$

i.e., $1 / M$ timesteps for interface to move one mesh zone

[^0]
Low Mach number flow: Explicit method

$M \ll 1$, severe time step restriction for explicit method

Desirable to reformulate (1) to filter out sound waves, while retaining compressibility effects, yielding timestep constraint

$$
\Delta t \leq \min \left(\frac{\Delta x}{|u|}\right)
$$

Alternatively, employ implicit time-discretization to allow larger time step for stability

Low Mach number approximations: Overview

Approaches for low Mach number approximations

1. Incompressible hydrodynamics

Formally $M \rightarrow 0$ limit of Navier-Stokes equations;
velocity satisfies

$$
\nabla \cdot \vec{u}=0 \quad \Longrightarrow \quad \frac{D \rho}{D t}=0
$$

No compressibility effects modeled in this approximation
2. Anelastic hydrodynamics (used in atmospheric sciences) Velocity \& density satisfy constraint equation

$$
\nabla \cdot\left(\rho_{0} \vec{u}\right)=0 \quad\left(\rho_{0} \text { variant hydrostatic density }\right)
$$

- Gatti-Bono \& Colella (JCP 2006): An anelastic allspeed projection method for gravitationally stratified flows

Low Mach number approximations: Overview

3. Pseudo-incompressibility hydrodynamics

Velocity satisfies constraint equation

$$
\nabla \cdot(\alpha \vec{u})=\beta
$$

for some $\alpha \& \beta$ depending on class of problems

- Almgren, Bell, Rendleman \& Zingale (APJ 2006): Low Mach number modeling of type la supernovae. I. Hydrodynamics

4. Low Mach number preconditioning

- Guillard \& Murrone (CAF 2004): On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes
- LeMartelot, Nkonga, \& Saurel (JCP 2013): Liquid and liquidgas flows at all speeds

Compressible gas dynamics: Scaling analysis

Define material derivative as

$$
\frac{D}{D t}=\partial_{t}+\vec{u} \cdot \nabla
$$

Write (1) in primitive form with respect to $\rho, \vec{u}, \& p$ as

$$
\begin{align*}
& \frac{D \rho}{D t}+\rho \nabla \cdot \vec{u}=0 \\
& \frac{D \vec{u}}{D t}+\frac{1}{\rho} \nabla p=0 \tag{3}\\
& \frac{D p}{D t}+\rho c^{2} \nabla \cdot \vec{u}=0
\end{align*}
$$

Introduce dimensionless variables

$$
\tilde{\rho}=\frac{\rho}{\rho_{0}}, \quad \tilde{\vec{u}}=\frac{\vec{u}}{u_{0}}, \quad \tilde{p}=\frac{p}{\rho_{0} c_{0}^{2}}, \quad \tilde{\vec{x}}=\frac{\vec{x}}{x_{0}}, \quad \tilde{t}=\frac{u_{0} t}{x_{0}}
$$

Compressible gas dynamics: Scaling analysis

With that, dimensionless form of (3) is

$$
\begin{align*}
& \frac{D \tilde{\rho}}{D \tilde{t}}+\tilde{\rho} \tilde{\nabla} \cdot \tilde{\vec{u}}=0 \\
& \frac{D \tilde{\vec{u}}}{D \tilde{t}}+\frac{1}{M^{2} \tilde{\rho}} \tilde{\nabla} \tilde{p}=0 \tag{4}\\
& \frac{D \tilde{p}}{D \tilde{t}}+\tilde{\rho} \tilde{c}^{2} \tilde{\nabla} \cdot \tilde{\vec{u}}=0
\end{align*}
$$

where scaling material derivative is defined as

$$
\frac{D}{D \tilde{t}}=\partial_{\tilde{t}}+\tilde{\vec{u}} \cdot \tilde{\nabla}
$$

$M=u_{0} / c_{0}$ is reference Mach number
Drop ~ in (4) below for simplicity

Compressible gas dynamics: Incompressible scaling

Assume formal asymptotic expansion of state z of form

$$
z=z_{0}+M z_{1}+M^{2} z_{2}+\cdots \quad \text { as } \quad M \rightarrow 0^{+}
$$

Substituting above into (4), we get

- Order $1 / M^{2}$:

$$
\nabla p_{0}=0
$$

- Order $1 / M$:

$$
\nabla p_{1}=0
$$

- Order 1:

$$
\begin{aligned}
& \partial_{t} \rho_{0}+\vec{u}_{0} \cdot \nabla \rho_{0}+\rho_{0} \nabla \cdot \vec{u}_{0}=0 \\
& \partial_{t} \vec{u}_{0}+\vec{u}_{0} \cdot \nabla \vec{u}_{0}+\frac{1}{\rho_{0}} \nabla p_{2}=0 \\
& \partial_{t} p_{0}+\rho_{0} c_{0}^{2} \nabla \cdot \vec{u}_{0}=0
\end{aligned}
$$

Compressible gas dynamics: Incompressible scaling

Under condition

$$
\begin{equation*}
\partial_{t} p_{0}=0 \tag{5}
\end{equation*}
$$

limit system at leading order tends formally to

$$
\begin{aligned}
& \partial_{t} p_{0}+\rho_{0} c_{0}^{2} \nabla \cdot \vec{u}_{0}=0 \Longrightarrow \quad \nabla \cdot \vec{u}_{0}=0 \\
& \partial_{t} \rho_{0}+\vec{u}_{0} \cdot \nabla \rho_{0}+\rho_{0} \nabla \cdot \vec{u}_{0}=0 \quad \Longrightarrow \\
& \partial_{t} \rho_{0}+\vec{u}_{0} \cdot \nabla \rho_{0}=0 \\
& \partial_{t} \vec{u}_{0}+\vec{u}_{0} \cdot \nabla \vec{u}_{0}+\frac{1}{\rho_{0}} \nabla p_{2}=0 \\
&
\end{aligned}
$$

Simple asymptotic analysis: Compressible Euler contains Incompressible + Acoustic

How these different phenomena organize? No general answer

Compressible gas dynamics: Preconditioned system

To enforce (5), Turkel (JCP 1987) introduces penalization

$$
\frac{1}{M^{2}} \partial_{t} p_{0}+\rho_{0} c_{0}^{2} \nabla \cdot \vec{u}_{0}=0
$$

to ensure formal convergence to incompressible solutions of limit system, yielding leading order system (ignore subscript)

$$
\begin{aligned}
& \partial_{t} \rho+\vec{u} \cdot \nabla \rho+\rho \nabla \cdot \vec{u}=0 \\
& \partial_{t} \vec{u}+\vec{u} \cdot \nabla \vec{u}+\frac{1}{\rho} \nabla p=0 \\
& \partial_{t} p+M^{2} \vec{u} \cdot \nabla p+M^{2} \rho c^{2} \nabla \cdot \vec{u}=0
\end{aligned}
$$

System is hyperbolic with wave speeds $\vec{u}, \vec{u}-\tilde{c}_{-}, \& \vec{u}+\tilde{c}_{+}$;

$$
\begin{aligned}
& \tilde{c}_{-}=\frac{\left(1-M^{2}\right) u_{i}+\sqrt{\left(M^{2}-1\right)^{2} u_{i}^{2}+4 M^{2} c^{2}}}{2} \\
& \tilde{c}_{+}=\frac{\left(M^{2}-1\right) u_{i}+\sqrt{\left(M^{2}-1\right)^{2} u_{i}^{2}+4 M^{2} c^{2}}}{2}
\end{aligned}
$$

Preconditioned system: Wave speeds

Wave speed is scaled with respect to Mach number

Now let us go to numerical schemes

Density-based implicit scheme: Conservation laws

Consider 1D hyperbolic conservation laws of form

$$
\begin{equation*}
\partial_{t} q+\partial_{x} f(q)=0, \quad x \in[a, b], \quad t>0 \tag{6}
\end{equation*}
$$

with suitable initial \& boundary conditions
q : vector of conservative variables \& f : flux vector
Hyperbolicity of (6) means existence of real eigenvalues of flux Jacobian $\partial_{q} f(q)$ for all q

Denote Q_{i}^{n} as numerical cell-average of q at cell $i \&$ time t_{n}

$$
Q_{i}^{n}:=\frac{1}{\Delta x_{i}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} q\left(x, t_{n}\right) d x
$$

$\Delta x_{i}=\Delta x:$ mesh size, $\Delta t:$ time step

Density-based implicit scheme: Conservation laws

Discretize (6) conservatively with backward Euler in time

$$
\begin{equation*}
Q_{i}^{n+1}=Q_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n+1}-F_{i-1 / 2}^{n+1}\right) \tag{7}
\end{equation*}
$$

with numerical flux

$$
\begin{equation*}
F_{i+1 / 2}=\frac{1}{2}\left[f\left(Q_{i}\right)+f\left(Q_{i+1}\right)-D_{i+1 / 2}\left(Q_{i+1}-Q_{i}\right)\right] \tag{8}
\end{equation*}
$$

$D_{i+1 / 2}$ is so-called diffusion matrix \&, e.g., assumes

$$
\begin{aligned}
\text { 1. } \quad D_{i+1 / 2}= & \frac{\Delta x}{\Delta t} I \quad \text { (Lax-Friedrichs) } \\
\text { 2. } \quad D_{i+1 / 2}= & a_{i+1 / 2} I \quad \text { (Rusanov) } \\
& a_{i+1 / 2}=\max \left(\left|f^{\prime}\left(Q_{i}\right)\right|,\left|f^{\prime}\left(Q_{i+1}\right)\right|\right)
\end{aligned}
$$

3. $\quad D_{i+1 / 2}=\left|\hat{A}_{i+1 / 2}\right| \quad$ (Upwind)

$$
\hat{A}_{i+1 / 2}=\left(\partial_{q} f\right)_{i+1 / 2} \quad \text { (average matrix) }
$$

Implicit conservative method: Matrix equations

Denote variation of Q_{i} in time

$$
\Delta Q_{i}=Q_{i}^{n+1}-Q_{i}^{n}
$$

To approximate $F_{i \pm 1 / 2}^{n+1}$, one may linearize $F_{i \pm 1 / 2}^{n+1}$ via Taylor series expansions as

$$
\begin{aligned}
F_{i+1 / 2}^{n+1} & =F\left(Q_{i}^{n+1}, Q_{i+1}^{n+1}\right) \\
& =F_{i+1 / 2}^{n}+\left(\frac{\partial F_{i+1 / 2}}{\partial Q_{i}}\right)^{n} \Delta Q_{i}+\left(\frac{\partial F_{i+1 / 2}}{\partial Q_{i+1}}\right)^{n} \Delta Q_{i+1} \\
F_{i-1 / 2}^{n+1} & =F\left(Q_{i-1}^{n+1}, Q_{i}^{n+1}\right) \\
& =F_{i-1 / 2}^{n}+\left(\frac{\partial F_{i-1 / 2}}{\partial Q_{i-1}}\right)^{n} \Delta Q_{i-1}+\left(\frac{\partial F_{i-1 / 2}}{\partial Q_{i}}\right)^{n} \Delta Q_{i}
\end{aligned}
$$

Implicit conservative method: Matrix equations

With that, it follows (7) satisfies block tridiagonal linear system of equations for ΔQ as

$$
\begin{align*}
& B_{-1} \Delta Q_{i-1}+B_{0} \Delta Q_{i}+B_{1} \Delta Q_{i+1}= \\
& -\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right) \tag{9a}
\end{align*}
$$

block matrices B_{-1}, B_{0}, \& B_{1} are

$$
\begin{align*}
B_{-1} & =-\frac{\Delta t}{\Delta x}\left(\frac{\partial F_{i-1 / 2}}{\partial Q_{i-1}}\right)^{n} \tag{9b}\\
B_{0} & =I-\frac{\Delta t}{\Delta x}\left(\frac{\partial F_{i-1 / 2}}{\partial Q_{i}}\right)^{n}+\frac{\Delta t}{\Delta x}\left(\frac{\partial F_{i+1 / 2}}{\partial Q_{i}}\right)^{n} \tag{9c}\\
B_{1} & =\frac{\Delta t}{\Delta x}\left(\frac{\partial F_{i+1 / 2}}{\partial Q_{i+1}}\right)^{n} \tag{9d}
\end{align*}
$$

Implicit conservative method: Matrix equations

Approaches for determining numerical fluxes $F_{i \pm 1 / 2}$ \& various flux derivatives in (9) include

1. Use (8) as basis \& take derivatives, yielding

$$
\begin{aligned}
B_{-1} & =-\frac{\Delta t}{2 \Delta x}\left(A_{i-1}^{n}+D_{i-1 / 2}^{n}\right) \\
B_{0} & =I-\frac{\Delta t}{2 \Delta x}\left(A_{i}^{n}-D_{i-1 / 2}^{n}\right)+\frac{\Delta t}{2 \Delta x}\left(A_{i}^{n}+D_{i+1 / 2}^{n}\right) \\
B_{1} & =\frac{\Delta t}{2 \Delta x}\left(A_{i+1}^{n}-D_{i+1 / 2}^{n}\right)
\end{aligned}
$$

2. Take derivatives to general wave-propagation-based flux

$$
F_{i+1 / 2}=\frac{1}{2}\left[f\left(Q_{i}\right)+f\left(Q_{i+1}\right)-\sum_{m=1}^{M_{w}}\left|\lambda_{i+1 / 2}^{m}\right| \mathcal{W}_{i+1 / 2}^{m}\right]
$$

Implicit conservative method: Matrix equations

Suppose $\lambda_{i+1 / 2}^{m} \& \mathcal{W}_{i+1 / 2}^{m}, m=1,2, \ldots, M_{w}$ are defined via solution of Riemann problem at each cell edge (see below)

With that, in determining B_{-1}, for instance, we perform

$$
\begin{aligned}
& \frac{\partial F_{i-1 / 2}}{\partial Q_{i-1}}= \frac{\partial}{\partial Q_{i-1}}\left(\frac{1}{2}\left[f\left(Q_{i-1}\right)+f\left(Q_{i}\right)-\sum_{m=1}^{M_{w}}\left|\lambda_{i-1 / 2}^{m}\right| \mathcal{W}_{i-1 / 2}^{m}\right]\right) \\
&= \frac{1}{2} A_{i-1}-\frac{1}{2} \sum_{m=1}^{M_{w}}\left[\mathcal{W}_{i-1 / 2}^{m}\left(\nabla_{Q_{i-1}}\left|\lambda_{i-1 / 2}^{m}\right|\right)+\right. \\
&\left.\quad\left|\lambda_{i-1 / 2}^{m}\right|\left(\frac{\partial \mathcal{W}_{i-1 / 2}^{m}}{\partial Q_{i-1}}\right)\right]
\end{aligned}
$$

yielding need to compute terms such as

$$
\nabla_{Q_{i-1}}\left|\lambda_{i-1 / 2}^{m}\right| \quad \& \quad \frac{\partial \mathcal{W}_{i-1 / 2}^{m}}{\partial Q_{i-1}}, \quad m=1,2, \ldots, M_{w}
$$

Riemann problem: Gas dynamics

Now for compressible Euler equations in 1D, Riemann problem is Cauchy problem that consists of

$$
\begin{equation*}
\partial_{t} q+\partial_{x} f(q)=0, \quad x \in \mathbf{R}, \quad t>0 \tag{11a}
\end{equation*}
$$

with

$$
q=\left[\begin{array}{c}
\rho \tag{11b}\\
\rho u \\
\rho E
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho E u+p u
\end{array}\right]
$$

as for model equations, \& piece-wise constant data

$$
q(x, 0)=\left\{\begin{array}{lll}
q_{L} & \text { if } & x<0 \tag{11c}\\
q_{R} & \text { if } & x>0
\end{array}\right.
$$

as for initial condition

Riemann problem: Hyperbolicity

To close model \& Riemann problem, assume ideal gas law

$$
p=(\gamma-1) \rho e
$$

Jacobian matrix of f in (11), denoted by A, is

$$
A=\frac{\partial f(q)}{\partial q}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{\gamma-3}{2} u^{2} & -(\gamma-1) u & \gamma-1 \\
\frac{\gamma-1}{2} u^{3}-H u & H-(\gamma-1) u^{2} & \gamma u
\end{array}\right]
$$

Its eigen-decomposition $A R=R \Lambda$, is with

$$
\begin{aligned}
& \Lambda=\operatorname{diag}(u-c, u, u+c) \\
& R=\left[\begin{array}{ccc}
1 & 1 & 1 \\
u-c & u & u+c \\
H-u c & \frac{1}{2} u^{2} & H+u c
\end{array}\right]
\end{aligned}
$$

$c=\sqrt{\gamma p / \rho}$ is speed of sound $\& H=(e+p) / \rho$ is specific enthalpy

Riemann problem: Basic solution structure

Elementary waves for Riemann problem in $x-t$ plane

Riemann problem: Basic solution structure

Snap shot of density for Sod Riemann problem

Riemann problem: Basic solution structure

Snap shot of pressure for Sod Riemann problem

Approximate Riemann solver: HLL

Harten-van Leer-Lax (HLL) approximate Riemann solver assumes 2 -wave structure of solution

$$
\mathcal{W}^{1}=q_{m}-q_{L}
$$

Approximate Riemann solver: HLL

In HLL solver for Euler equations, left- \& right-most speeds λ^{1} \& λ^{2} can be chosen, e.g., from estimate proposed by Davis,

$$
\begin{align*}
& \lambda^{1}=\min \left(u_{R}-c_{R}, u_{L}-c_{L}\right) \\
& \lambda^{2}=\max \left(u_{R}+c_{R}, u_{L}+c_{L}\right) \tag{12}
\end{align*}
$$

Define q_{m} as average of solution over $\left[\lambda^{1} T, \lambda^{2} T\right]$ at time T,

$$
q_{m}=\frac{1}{\left(\lambda^{2}-\lambda^{1}\right) T} \int_{\lambda^{1} T}^{\lambda^{2} T} q(x, T) d x
$$

Approximate Riemann solver: HLL

Using integral form of conservation laws over $\left[\lambda^{1} T, \lambda^{2} T\right] \times[0, T]$, it follows

$$
q_{m}=\frac{\lambda^{2} q_{R}-\lambda^{1} q_{L}-f\left(q_{R}\right)+f\left(q_{L}\right)}{\lambda^{2}-\lambda^{1}}
$$

$f\left(q_{\iota}\right)$ is flux evaluated at state q_{ι} for $\iota=L, R$, yielding

$$
\begin{aligned}
& \mathcal{W}^{1}=q_{m}-q_{L} \\
& \mathcal{W}^{2}=q_{R}-q_{m}
\end{aligned}
$$

Now return to computing $B_{k}, k=-1,0,1$
Since definition of $\lambda^{1} \& \lambda^{2}$ in (12), it leads to assuming

$$
\nabla_{q_{\iota}} \lambda^{1}=\nabla_{q_{\iota}} \lambda^{2}=0 \quad \text { for } \quad \iota=L, R
$$

Matrix equations: HLL-based solver

As to derivatives of \mathcal{W}^{1}, there are

$$
\begin{aligned}
\frac{\partial \mathcal{W}^{1}}{\partial q_{L}} & =\frac{\partial}{\partial q_{L}}\left(q_{m}-q_{L}\right) \\
& =\frac{\partial}{\partial q_{L}}\left(\frac{\lambda^{2} q_{R}-\lambda^{1} q_{L}-f\left(q_{R}\right)+f\left(q_{L}\right)}{\lambda^{2}-\lambda^{1}}\right)-1 \\
& =\left(-\lambda^{2} I+\frac{\partial f\left(q_{L}\right)}{\partial q_{L}}\right) /\left(\lambda^{2}-\lambda^{1}\right) \\
\frac{\partial \mathcal{W}^{1}}{\partial q_{R}} & =\frac{\partial}{\partial q_{R}}\left(q_{m}-q_{L}\right) \\
& =\frac{\partial}{\partial q_{R}}\left(\frac{\lambda^{2} q_{R}-\lambda^{1} q_{L}-f\left(q_{R}\right)+f\left(q_{L}\right)}{\lambda^{2}-\lambda^{1}}\right) \\
& =\left(\lambda^{2} I-\frac{\partial f\left(q_{R}\right)}{\partial q_{R}}\right) /\left(\lambda^{2}-\lambda^{1}\right)
\end{aligned}
$$

Matrix equations: HLL-based solver

Now to derivaives of \mathcal{W}^{2}, there are

$$
\begin{aligned}
\frac{\partial \mathcal{W}^{2}}{\partial q_{L}} & =\frac{\partial}{\partial q_{L}}\left(q_{R}-q_{m}\right) \\
& =-\frac{\partial}{\partial q_{L}}\left(\frac{\lambda^{2} q_{R}-\lambda^{1} q_{L}-f\left(q_{R}\right)+f\left(q_{L}\right)}{\lambda^{2}-\lambda^{1}}\right) \\
& =-\left(-\lambda^{1} I+\frac{\partial f\left(q_{L}\right)}{\partial q_{L}}\right) /\left(\lambda^{2}-\lambda^{1}\right) \\
\frac{\partial \mathcal{W}^{2}}{\partial q_{R}} & =\frac{\partial}{\partial q_{R}}\left(q_{R}-q_{m}\right) \\
& =1-\frac{\partial}{\partial q_{R}}\left(\frac{\lambda^{2} q_{R}-\lambda^{1} q_{L}-f\left(q_{R}\right)+f\left(q_{L}\right)}{\lambda^{2}-\lambda^{1}}\right) \\
& =\left(-\lambda^{1} I+\frac{\partial f\left(q_{R}\right)}{\partial q_{R}}\right) /\left(\lambda^{2}-\lambda^{1}\right)
\end{aligned}
$$

Matrix equations: HLL-based solver

Recall $\quad B_{-1}=-\frac{\Delta t}{\Delta x}\left(\frac{\partial F_{i-1 / 2}}{\partial Q_{i-1}}\right)^{n}$

$$
\begin{aligned}
& B_{0}=I-\frac{\Delta t}{\Delta x}\left(\frac{\partial F_{i-1 / 2}}{\partial Q_{i}}\right)^{n}+\frac{\Delta t}{\Delta x}\left(\frac{\partial F_{i+1 / 2}}{\partial Q_{i}}\right)^{n} \\
& B_{1}=\frac{\Delta t}{\Delta x}\left(\frac{\partial F_{i+1 / 2}}{\partial Q_{i+1}}\right)^{n}
\end{aligned}
$$

Denote $F_{i-1 / 2}=F_{L R}, Q_{i-1}=q_{L}, \& Q_{i}=q_{R}$. We have

$$
\begin{aligned}
& \frac{\partial F_{L R}}{\partial q_{L}}=\frac{1}{2} A_{L}-\frac{1}{2}\left(\left|\lambda^{1}\right| \frac{\partial \mathcal{W}^{1}}{\partial q_{L}}+\left|\lambda^{2}\right| \frac{\partial \mathcal{W}^{2}}{\partial q_{L}}\right) \\
& \quad=\frac{1}{2} A_{L}-\frac{1}{2}\left[\frac{\left|\lambda^{1}\right|}{\lambda^{2}-\lambda^{1}}\left(-\lambda^{2} I+A_{L}\right)+\frac{\left|\lambda^{2}\right|}{\lambda^{2}-\lambda^{1}}\left(\lambda^{1} I-A_{L}\right)\right]
\end{aligned}
$$

Matrix equations: HLL-based solver

In addition,

$$
\frac{\partial F_{L R}}{\partial q_{R}}=\frac{1}{2} A_{R}-\frac{1}{2}\left[\frac{\left|\lambda^{1}\right|}{\lambda^{2}-\lambda^{1}}\left(\lambda^{2} I-A_{R}\right)+\frac{\left|\lambda^{2}\right|}{\lambda^{2}-\lambda^{1}}\left(-\lambda^{1} I+A_{R}\right)\right]
$$

It is easy to show if $\lambda_{i+1 / 2}^{1}=-\lambda_{i+1 / 2}^{2}$ for all i, we recoover

$$
B_{\iota}^{\mathrm{HLL}}=B_{\iota}^{\mathrm{LLF}}, \quad \iota=-, 0,+
$$

Using general wave-propagation form numerical fluxes (10), we may relax dependence on characteristic decomposition of model equations; difficult to do in some instances

Implicit conservative scheme as $M \rightarrow 0$

Recall that asymptotic analysis show that when $M \rightarrow 0$, solution of pressure is of form

$$
\begin{equation*}
p(\vec{x}, t)=p_{0}(t)+M p_{1}(t)+M^{2} p_{2}(\vec{x}, t)+\cdots \tag{13}
\end{equation*}
$$

In discrete case, as $M \rightarrow 0$, it is known that (cf. Guillard \& Viozat CAF 1999) computed pressure obtained using above implicit scheme with Roe solver would behave like

$$
p(\vec{x}, t)=p_{0}(t)+M p_{1}(\vec{x}, t)
$$

this is clearly different from (13)

Preconditioned system \& scheme

To obtain desire asymptotic behavior of computed pressure in form (13), preconditioned dissipation is proposed, i.e.,

$$
F_{i+1 / 2}=\frac{1}{2}\left[f\left(Q_{i}\right)+f\left(Q_{i+1}\right)-P_{i+1 / 2}^{-1}\left|P_{i+1 / 2} A_{i+1 / 2}\right|\left(Q_{i+1}-Q_{i}\right)\right]
$$

Here P is a chosen preconditioned matrix which scales sound speed as seen before

In essence, original conservation law (6) is modified by

$$
\partial_{t} q+P \partial_{x} f(q)=0
$$

Preconditioned system \& scheme

To obtain desire asymptotic behavior of computed pressure in form (13), preconditioned dissipation is proposed, i.e.,

$$
F_{i+1 / 2}=\frac{1}{2}\left[f\left(Q_{i}\right)+f\left(Q_{i+1}\right)-P_{i+1 / 2}^{-1}\left|P_{i+1 / 2} A_{i+1 / 2}\right|\left(Q_{i+1}-Q_{i}\right)\right]
$$

Here P is a chosen preconditioned matrix which scales sound speed as seen before

In essence, original conservation law (6) is modified by

$$
\partial_{t} q+P \partial_{x} f(q)=0
$$

This is work ongoing; we next discuss pressure-based scheme

Pressure-based method: Primitive case

Non-conservative formulation: Yabe \& coworkers

- Write Euler's equations in non-conservative form

$$
\begin{aligned}
& \partial_{t} q+\vec{u} \cdot \nabla q=\psi(q) \\
& q=\left[\begin{array}{lll}
\rho, & \vec{u}, & p
\end{array}\right]^{T} \\
& \psi=\left[\begin{array}{lll}
-\rho \nabla \cdot \vec{u}, & -\frac{1}{\rho} \nabla p, & -\rho c^{2} \nabla \cdot \vec{u}
\end{array}\right]^{T}
\end{aligned}
$$

- Perform non-advection step first to solve

$$
\partial_{t} q=\psi(q)
$$

- Perform advection step next to solve

$$
\partial_{t} q+\vec{u} \cdot \nabla q=0
$$

Pressure-based method: Primitive case

In non-advection step, say in 2 D , we assume $\Delta \rho \& \Delta e$ can be well-approximated by

$$
\begin{aligned}
& \Delta \rho=\rho^{n+1}-\rho^{n}=-\rho^{n} \Delta t\left(D_{x} u^{n+1}+D_{y} v^{n+1}\right) \\
& \Delta e=e^{n+1}-e^{n}=-\frac{p^{n}}{\rho^{n}} \Delta t\left(D_{x} u^{n+1}+D_{y} v^{n+1}\right)
\end{aligned}
$$

Substituting them into basic thermodynamic relation

$$
\begin{gathered}
\Delta p=p^{n+1}-p^{n}=\left(\frac{\partial p}{\partial \rho}\right)_{e}^{n} \Delta \rho+\left(\frac{\partial p}{\partial e}\right)_{\rho}^{n} \Delta e, \quad \text { yielding } \\
\Delta p=-\left(\rho c^{2}\right)^{n} \Delta t\left(D_{x} u^{n+1}+D_{y} v^{n+1}\right)
\end{gathered}
$$

Pressure-based method: Primitive case

From

$$
\begin{aligned}
& \Delta u=u^{n+1}-u^{n}=-\frac{D_{x} p^{n+1}}{\rho^{n}} \Delta t \\
& \Delta v=v^{n+1}-v^{n}=-\frac{D_{y} p^{n+1}}{\rho^{n}} \Delta t
\end{aligned}
$$

Substituting $u^{n+1} \& v^{n+1}$ into

$$
\Delta p=-\left(\rho c^{2}\right)^{n} \Delta t\left(D_{x} u^{n+1}+D_{y} v^{n+1}\right)
$$

yielding Helmholtz equation for p^{n+1} as

$$
\begin{aligned}
& D_{x}\left(\frac{D_{x} p^{n+1}}{\rho^{n}}\right)+D_{y}\left(\frac{D_{y} p^{n+1}}{\rho^{n}}\right)= \\
& \frac{p^{n+1}-p^{n}}{\left(\rho c^{2}\right)^{n}(\Delta t)^{2}}+\frac{1}{\Delta t}\left(D_{x} u^{n}+D_{y} v^{n}\right)
\end{aligned}
$$

Pressure-based method: Conservaive form

Conservative formulation: Xiao, Sussman, Fedwik, ...

- Use Euler's equations in conservation form

$$
\begin{aligned}
& \partial_{t} q+\nabla \cdot f(q)=\psi(q) \\
& q=\left[\begin{array}{lll}
\rho, & \rho \vec{u}, & \rho E
\end{array}\right]^{T} \\
& f(q)=\left[\begin{array}{lll}
\rho \vec{u}, & \rho \vec{u} \otimes \vec{u}, & \rho E \vec{u}
\end{array}\right]^{T} \\
& \psi=\left[\begin{array}{lll}
0, & -\nabla p, & -\nabla \cdot(p \vec{u})
\end{array}\right]^{T}
\end{aligned}
$$

- Perform colorred advection step first to solve

$$
\partial_{t} q+\nabla \cdot f(q)=0
$$

- Perform non-advection step next to solve

$$
\partial_{t} q=\psi(q)
$$

Pressure-based method: Conservaive form

First, update advection terms of conserved variables

$$
\begin{aligned}
\rho^{n+1} & =\rho^{n}-\Delta t \nabla \cdot(\rho \vec{u})^{n} \\
(\rho \vec{u})^{n+1} & =(\rho \vec{u})^{n}-\Delta t \nabla \cdot(\rho \vec{u} \otimes \vec{u})^{n}-\Delta t \nabla p^{n+1} \\
E^{n+1} & =E^{n}-\Delta t \nabla \cdot(E \vec{u})^{n}-\Delta t \nabla \cdot(p \vec{u})^{n+1}
\end{aligned}
$$

Non-advection momentum \& energy updates are

$$
\begin{aligned}
(\rho \vec{u})^{n+1} & =(\rho \vec{u})^{*}-\Delta t \nabla p^{n+1} \\
E^{n+1} & =E^{*}-\Delta t \nabla \cdot(p \vec{u})^{n+1}, \quad \text { yielding also } \\
\nabla \cdot \vec{u}^{n+1} & =\nabla \cdot \overrightarrow{u^{*}}-\Delta t \nabla \cdot\left(\frac{\nabla p^{n+1}}{\rho^{n+1}}\right)
\end{aligned}
$$

Pressure-based method: Conservaive form

$\nabla \cdot \vec{u}^{n+1}=0$ in case of incompressible flow, here it follows

$$
\left(p_{t}+\vec{u} \cdot \nabla p\right)^{n} \approx-\left(\rho c^{2}\right)^{n} \nabla \cdot \vec{u}^{n+1}
$$

approximately or

$$
\frac{p^{n+1}-p^{n}}{\Delta t}+(\vec{u} \cdot \nabla p)^{n} \approx-\left(\rho c^{2}\right)^{n} \nabla \cdot \vec{u}^{n+1}
$$

This leads to Helmholtz equation for pressure

$$
\begin{gathered}
p^{n+1}-\left(\rho c^{2}\right)^{n} \Delta t^{2} \nabla \cdot\left(\frac{\nabla p^{n+1}}{\rho^{n+1}}\right)=p^{a}-\left(\rho c^{2}\right)^{n} \Delta t \nabla \cdot \overrightarrow{u^{*}}, \quad \text { where } \\
p^{a}=p^{n}+\Delta t\left(\vec{u}^{n} \cdot \nabla p^{n}\right)
\end{gathered}
$$

Pressure-based method: Conservaive form

$\nabla \cdot \vec{u}^{n+1}=0$ in case of incompressible flow, here it follows

$$
\left(p_{t}+\vec{u} \cdot \nabla p\right)^{n} \approx-\left(\rho c^{2}\right)^{n} \nabla \cdot \vec{u}^{n+1}
$$

approximately or

$$
\frac{p^{n+1}-p^{n}}{\Delta t}+(\vec{u} \cdot \nabla p)^{n} \approx-\left(\rho c^{2}\right)^{n} \nabla \cdot \vec{u}^{n+1}
$$

This leads to Helmholtz equation for pressure

$$
\begin{gathered}
p^{n+1}-\left(\rho c^{2}\right)^{n} \Delta t^{2} \nabla \cdot\left(\frac{\nabla p^{n+1}}{\rho^{n+1}}\right)=p^{a}-\left(\rho c^{2}\right)^{n} \Delta t \nabla \cdot \overrightarrow{u^{*}}, \quad \text { where } \\
p^{a}=p^{n}+\Delta t\left(\vec{u}^{n} \cdot \nabla p^{n}\right)
\end{gathered}
$$

We next move to 2-phase flow case

Compressible 2-phase flow: Mathematical Models

In this talk, our interest is on following class of model for compressible 2-phase flow

1. 7-equation model (Baer-Nunziato type)
2. Reduced 5-equation model (Kapila type)
3. Homogeneous 6 -equation model

- Saurel et al. (JCP 2009), Pelanti \& Shyue (JCP 2014)

Homogeneous 2-phase flow model: Barotropic case

One simple homogeneous (1 velocity, 1 pressure) model for barotropic 2 -phase flow is

$$
\begin{aligned}
\partial_{t}\left(\alpha_{1} \rho_{1}\right)+\nabla \cdot\left(\alpha_{1} \rho_{1} \vec{u}\right) & =0 \\
\partial_{t}\left(\alpha_{2} \rho_{2}\right)+\nabla \cdot\left(\alpha_{2} \rho_{2} \vec{u}\right) & =0 \\
\partial_{t}(\rho \vec{u})+\nabla \cdot(\rho \vec{u} \otimes \vec{u})+\nabla p & =0
\end{aligned}
$$

Assume constitutive law for each fluid phase satisfies

$$
p_{k}\left(\rho_{k}\right)=\mathcal{A}_{k}\left(\frac{\rho_{k}}{\rho_{0 k}}\right)^{\gamma}-\mathcal{B}_{k} \quad \text { (Tait equation of state) }
$$

Equilibrium pressure $p=p_{1}=p_{2}$ follows saturation relation

$$
\alpha_{1}+\alpha_{2}=\frac{\alpha_{1} \rho_{1}}{\rho_{1}(p)}+\frac{\alpha_{2} \rho_{2}}{\rho_{2}(p)}=1
$$

yielding nonlinear algebraic equation to be solved

Homogeneous 2-phase flow model: Sound speed

Model is hyperbolic with equilibrium sound speed c_{p} :

$$
\frac{1}{\rho c_{p}^{2}}=\frac{\alpha_{1}}{\rho_{1} c_{1}^{2}}+\frac{\alpha_{2}}{\rho_{2} c_{2}^{2}}
$$

Non-monotonic c_{p} leads to stiffness in equations \& difficulties in numerical solver, e.g., positivitypreserving in volume fraction \& pressure

Homogeneous relaxation model: Barotropic case

Numerically, it is more stable to consider relaxation model

$$
\begin{aligned}
\partial_{t}\left(\alpha_{1} \rho_{1}\right)+\nabla \cdot\left(\alpha_{1} \rho_{1} \vec{u}\right) & =0 \\
\partial_{t}\left(\alpha_{2} \rho_{2}\right)+\nabla \cdot\left(\alpha_{2} \rho_{2} \vec{u}\right) & =0 \\
\partial_{t}(\rho \vec{u})+\nabla \cdot(\rho \vec{u} \otimes \vec{u})+\nabla\left(\alpha_{1} p_{1}+\alpha_{2} p_{2}\right) & =0 \\
\partial_{t} \alpha_{1}+\vec{u} \cdot \nabla \alpha_{1} & =\mu\left(p_{1}-p_{2}\right)
\end{aligned}
$$

Write model in compact form as

$$
\partial_{t} q+\nabla \cdot f(q)+w(q, \nabla q)=\psi_{\mu}(q)
$$

Compute approximate solution based on fractional step:

1. Homogeneous hyperbolic step

$$
\partial_{t} q+\nabla \cdot f(q)+w(q, \nabla q)=0
$$

2. Source-term relaxation step as parameter $\mu \rightarrow \infty$

$$
\partial_{t} q=\psi_{\mu}(q) \quad \Longrightarrow \quad p_{1}\left(\frac{\alpha_{1} \rho_{1}}{\alpha_{1}}\right)-p_{2}\left(\frac{\alpha_{2} \rho_{2}}{1-\alpha_{1}}\right)=0
$$

Homogeneous relaxation model: Hyperbolic step

Sound speed in hyperbolic step, denoted by c_{f}, is

$$
\rho c_{f}^{2}=\sum_{k=1}^{2} \alpha_{k} \rho_{k} c_{k}^{2} \quad \text { (frozen speed) }
$$

which satisfies sub-characteristic condition $c_{p} \leq c_{f}$

Homogeneous relaxation model: Frozen sound speed

$$
\begin{aligned}
c_{f}^{2} & =\partial_{\rho}\left(\sum_{k=1}^{2} \alpha_{k} p_{k}\right)_{Y_{k}, \alpha_{k}, s_{k}}=\sum_{k=1}^{2} \alpha_{k} \partial_{\rho} p_{k} \\
& =\sum_{k=1}^{2} \alpha_{k}\left(\partial_{\rho_{k}} p_{k}\right)\left(\partial_{\rho} \rho_{k}\right)=\sum_{k=1}^{2} \alpha_{k} c_{k}^{2}\left(\partial_{\rho} \rho_{k}\right) \\
& =\sum_{k=1}^{2} Y_{k} c_{k}^{2} \\
d Y_{k} & =d\left(\frac{\alpha_{k} \rho_{k}}{\rho}\right)=\frac{\rho \alpha_{k} d \rho_{k}-\alpha_{k} \rho_{k} d \rho}{\rho^{2}} \\
& =\frac{\alpha_{k}}{\rho}\left(d \rho_{k}-\frac{\rho_{k}}{\rho} d \rho\right)=0 \quad \Longrightarrow \quad \frac{d \rho_{k}}{d \rho}=\frac{\rho_{k}}{\rho}
\end{aligned}
$$

Homogeneous relaxation model: Asymptotics

Take formal asymptotic expansion ansatz of solution

$$
q=q^{0}+\varepsilon q^{1}+\cdots
$$

Derive equilibrium equation for q^{0} as $\mu=1 / \varepsilon \rightarrow \infty\left(\varepsilon \rightarrow 0^{+}\right)$
Recall material derivative as

$$
\frac{D}{D t}=\partial_{t}+\vec{u} \cdot \nabla
$$

We find

$$
\begin{aligned}
\frac{D \alpha_{1}}{D t}= & \frac{1}{\varepsilon}\left(p_{1}-p_{2}\right) \\
\frac{D p_{k}}{D t}= & \frac{\partial p_{k}}{\partial \rho_{k}} \frac{D \rho_{k}}{D t}=c_{k}^{2} \frac{D \rho_{k}}{D t}=-\frac{c_{k}^{2}}{\alpha_{k}}\left(\rho_{k} \frac{D \alpha_{k}}{D t}+\alpha_{k} \rho_{k} \nabla \cdot \vec{u}\right) \\
& \Longrightarrow \frac{D p_{k}}{D t}+\rho_{k} c_{k}^{2} \nabla \cdot \vec{u}=-\frac{\rho_{k} c_{k}^{2}}{\alpha_{k}} \frac{D \alpha_{k}}{D t}
\end{aligned}
$$

Homogeneous relaxation model: Asymptotics

Substituting asymptotic expansions to equations, we get

$$
\begin{aligned}
& \frac{D}{D t}\left(\alpha_{1}^{0}+\varepsilon \alpha_{1}^{1}+\cdots\right)=\frac{1}{\varepsilon}\left[\left(p_{1}^{0}-p_{2}^{0}\right)+\varepsilon\left(p_{1}^{1}-p_{2}^{1}\right)+\cdots\right] \\
& \frac{D}{D t}\left(p_{k}^{0}+\varepsilon p_{k}^{1}+\cdots\right)+\left(\rho_{k}^{0} c_{k}^{2}+\varepsilon \rho_{k}^{1} c_{k}^{1^{2}}+\cdots\right) \nabla \cdot \vec{u}= \\
& \quad-\left(\frac{\rho_{k}^{0} c_{k}^{0^{2}}+\varepsilon \rho_{k}^{1} c_{k}^{1^{2}}+\cdots}{\alpha_{k}^{0}+\varepsilon \alpha_{k}^{1}+\cdots}\right) \frac{D}{D t}\left(\alpha_{k}^{0}+\varepsilon \alpha_{k}^{1}+\cdots\right)
\end{aligned}
$$

Collecting equal power of ε, we have

$$
\begin{aligned}
O(1 / \varepsilon) & p_{1}^{0}=p_{2}^{0} \equiv p^{0} \\
O(1) & \frac{D p_{k}^{0}}{D t}+\rho_{k}^{0} c_{k}^{0^{2}} \nabla \cdot \vec{u}=-\left(\frac{\rho_{k}^{0} c_{k}^{0^{2}}}{\alpha_{k}^{0}}\right) \frac{D \alpha_{k}^{0}}{D t}
\end{aligned}
$$

Homogeneous relaxation model: Asymptotics

$$
\begin{array}{r}
\Longrightarrow \quad \frac{D p_{1}^{0}}{D t}+\rho_{1}^{0} c_{1}^{0^{2}} \nabla \cdot \vec{u}=-\left(\frac{\rho_{1}^{0} c_{1}^{c^{2}}}{\alpha_{1}^{0}}\right)\left(p_{1}^{1}-p_{2}^{1}\right) \\
\\
\frac{D p_{2}^{0}}{D t}+\rho_{2}^{0} c_{2}^{c^{2}} \nabla \cdot \vec{u}=-\left(\frac{\rho_{2}^{0} c_{2}^{c_{2}}}{\alpha_{2}^{0}}\right)\left(p_{2}^{1}-p_{1}^{1}\right)
\end{array}
$$

Subtracting former two equations \& with $p_{1}^{0}=p_{2}^{0}$, we find

$$
\left(\rho_{1}^{0} c_{1}^{0^{2}}-\rho_{2}^{0} c_{2}^{0^{2}}\right) \nabla \cdot \vec{u}=\left(\frac{\rho_{1}^{0} c_{1}^{0^{2}}}{\alpha_{1}^{0}}+\frac{\rho_{2}^{0} c_{2}^{0^{2}}}{\alpha_{2}^{0}}\right)\left(p_{2}^{1}-p_{1}^{1}\right)
$$

i.e.,

$$
\frac{D \alpha_{1}^{0}}{D t}=p_{1}^{1}-p_{2}^{1}=\left(\frac{\rho_{2}^{0} c_{2}^{0^{2}}-\rho_{1}^{0} c_{1}^{0^{2}}}{\rho_{1}^{0} c_{1}^{2} / \alpha_{1}^{0}+\rho_{2}^{0} c_{2}^{0^{2}} / \alpha_{2}^{0}}\right) \nabla \cdot \vec{u}
$$

Homogeneous equilibrium model

Ignore superscript 0 to simplify notation
In summary, as $\mu \rightarrow \infty$ leading order approximation of homogeneous relaxation model (HRM) gives so-called homogeneous equilibrium model (HEM) \& takes

$$
\begin{aligned}
& \partial_{t}\left(\alpha_{1} \rho_{1}\right)+\nabla \cdot\left(\alpha_{1} \rho_{1} \vec{u}\right)=0 \\
& \partial_{t}\left(\alpha_{2} \rho_{2}\right)+\nabla \cdot\left(\alpha_{2} \rho_{2} \vec{u}\right)=0 \\
& \partial_{t}(\rho \vec{u})+\nabla \cdot(\rho \vec{u} \otimes \vec{u})+\nabla p=0 \\
& \partial_{t} \alpha_{1}+\vec{u} \cdot \nabla \alpha_{1}=\left(\frac{\rho_{2} c_{2}^{2}-\rho_{1} c_{1}^{2}}{\rho_{1} c_{1}^{2} / \alpha_{1}+\rho_{2} c_{2}^{2} / \alpha_{2}}\right) \nabla \cdot \vec{u}
\end{aligned}
$$

Mixture pressure $p=\alpha_{1} p_{1}+\alpha_{2} p_{2}$
$p_{1} \rightarrow p_{2}$ means p approaches towards mechanical equilibrium

Homogeneous equilibrium model: Volume fraction

Volume-fraction equation is differential form of pressure equilibrium condition $p_{1}\left(\rho_{1}\right)=p_{2}\left(\rho_{2}\right)$

Denote $K=\left(\rho_{2} c_{2}^{2}-\rho_{1} c_{1}^{2}\right) /\left(\rho_{1} c_{1}^{2} / \alpha_{1}+\rho_{2} c_{2}^{2} / \alpha_{2}\right)$.
Assume $K<0$, i.e., $\rho_{2} c_{2}^{2}<\rho_{1} c_{1}^{2}$ (phase 1 less compressible)

1. Compaction effect ($K \nabla \cdot \vec{u}>0$)
α_{1} increases when $\nabla \cdot \vec{u}<0$ (compression or shock waves)
2. Relaxation effect ($K \nabla \cdot \vec{u}<0$)
α_{1} decreases when $\nabla \cdot \vec{u}>0$ (expansion waves)
3. No effect
α_{1} remains unchanged when $\nabla \cdot \vec{u}=0$ (contacts)

Homogeneous equilibrium model: Sound speed

Sound speed in HEM can be derived easily as

$$
\begin{aligned}
& \frac{D p}{D t}=c_{1}^{2} \frac{D \rho_{1}}{D t}=c_{1}^{2} \frac{\rho_{1}}{\alpha_{1}} \frac{D \alpha_{1}}{D t}-\rho_{1} c_{1}^{2} \nabla \cdot \vec{u} \\
& \Longrightarrow \frac{\alpha_{1}}{\rho_{1} c_{1}^{2}} \frac{D p}{D t}=\frac{D \alpha_{1}}{D t}-\alpha_{1} \nabla \cdot \vec{u}
\end{aligned}
$$

Analogously, we have

$$
\frac{\alpha_{2}}{\rho_{2} c_{2}^{2}} \frac{D p}{D t}=\frac{D \alpha_{2}}{D t}-\alpha_{2} \nabla \cdot \vec{u}
$$

Adding together leads to

$$
\begin{gathered}
\left(\frac{\alpha_{1}}{\rho_{1} c_{1}^{2}}+\frac{\alpha_{2}}{\rho_{2} c_{2}^{2}}\right) \frac{D p}{D t}=\frac{D}{D t}\left(\alpha_{1}+\alpha_{2}\right)-\left(\alpha_{1}+\alpha_{2}\right) \nabla \cdot \vec{u} \\
\frac{D p}{D t}=-\rho c^{2} \nabla \cdot \vec{u}, \quad \frac{1}{\rho c^{2}}=\frac{\alpha_{1}}{\rho_{1} c_{1}^{2}}+\frac{\alpha_{2}}{\rho_{2} c_{2}^{2}}=\frac{1}{\rho c_{p}^{2}}
\end{gathered}
$$

Pressure correction scheme: Primitive HRM

Begin with Mach-uniform approach for HRM in primitive form

$$
\begin{aligned}
\partial_{t}\left(\alpha_{1} \rho_{1}\right)+\vec{u} \cdot \nabla\left(\alpha_{1} \rho_{1}\right) & =-\alpha_{1} \rho_{1} \nabla \cdot \vec{u} \\
\partial_{t}\left(\alpha_{2} \rho_{2}\right)+\vec{u} \cdot \nabla\left(\alpha_{2} \rho_{2}\right) & =-\alpha_{2} \rho_{2} \nabla \cdot \vec{u} \\
\partial_{t} \vec{u}+\vec{u} \cdot \nabla \vec{u} & =-\frac{1}{\rho} \nabla p+\vec{g} \\
\partial_{t} \alpha_{1}+\vec{u} \cdot \nabla \alpha_{1} & =\mu\left(p_{1}-p_{2}\right)
\end{aligned}
$$

Split model into advection part \& non-advection part

$$
\begin{array}{ll}
\partial_{t}\left(\alpha_{1} \rho_{1}\right)+\vec{u} \cdot \nabla\left(\alpha_{1} \rho_{1}\right)=0 & \partial_{t}\left(\alpha_{1} \rho_{1}\right)=-\alpha_{1} \rho_{1} \nabla \cdot \vec{u} \\
\partial_{t}\left(\alpha_{2} \rho_{2}\right)+\vec{u} \cdot \nabla\left(\alpha_{2} \rho_{2}\right)=0 & \partial_{t}\left(\alpha_{2} \rho_{2}\right)=-\alpha_{2} \rho_{2} \nabla \cdot \vec{u} \\
\partial_{t} \vec{u}+\vec{u} \cdot \nabla \vec{u}=0 & \partial_{t} \vec{u}=-\nabla p / \rho+\vec{g} \\
\partial_{t} \alpha_{1}+\vec{u} \cdot \nabla \alpha_{1}=0 & \partial_{t} \alpha_{1}=\mu\left(p_{1}-p_{2}\right)
\end{array}
$$

Pressure correction scheme: Primitive HRM

1. Hyperbolic predictor step

Solve advection-part equations with fluid-velocity CFL

$$
\nu=\frac{\max _{i}\left|u_{i}\right| \Delta t}{\Delta x} \leq 1
$$

yielding intermediate state, denoted by $* \quad$ (easy)
2. Helmholtz corrector step

Discretize non-advection part equations semi-implicitly

$$
\begin{aligned}
\left(\alpha_{1} \rho_{1}\right)^{n+1} & =\left(\alpha_{1} \rho_{1}\right)^{*}-\Delta t\left(\alpha_{1} \rho_{1}\right)^{*} \nabla \cdot \vec{u}^{n+1} \\
\left(\alpha_{2} \rho_{2}\right)^{n+1} & =\left(\alpha_{2} \rho_{2}\right)^{*}-\Delta t\left(\alpha_{2} \rho_{2}\right)^{*} \nabla \cdot \vec{u}^{n+1} \\
\vec{u}^{n+1} & =\vec{u}^{*}-\Delta t \nabla p^{n+1} / \rho^{*}+\Delta t \vec{g}
\end{aligned}
$$

3. Relaxation step

Solve for α_{1}^{n+1} as $\mu \rightarrow \infty$, i.e., root-finding

$$
p_{1}\left[\left(\alpha_{1} \rho_{1}\right)^{n+1} / \alpha_{1}^{n+1}\right]-p_{2}\left[\left(\alpha_{2} \rho_{2}\right)^{n+1} /\left(1-\alpha_{1}^{n+1}\right)\right]=0
$$

Pressure correction: Helmholtz corrector step

In step 2, to derive Helmholtz equation for pressure p, we begin

$$
\partial_{t} p=\left(\partial_{\rho} p\right)\left(\partial_{t} \rho\right)=c^{2}\left(\partial_{t} \rho\right)
$$

Consistent with semi-discretized scheme for density, propose

$$
p^{n+1}=p^{*}-\Delta t\left(\rho c^{2}\right)^{*} \nabla \cdot \vec{u}^{n+1}
$$

Substituting $\nabla \cdot \vec{u}$ in above with

$$
\nabla \cdot \vec{u}^{n+1}=\nabla \cdot \vec{u}^{*}-\Delta t \nabla \cdot\left(\frac{\nabla p^{n+1}}{\rho^{*}}\right)
$$

obtained by applying divergence to momentum equation gives

$$
\nabla \cdot \vec{u}^{*}-\Delta t \nabla \cdot\left(\frac{\nabla p^{n+1}}{\rho^{*}}\right)=-\frac{1}{\Delta t\left(\rho c^{2}\right)^{*}}\left(p^{n+1}-p^{*}\right)
$$

equation of Helmholtz-type for pressure p^{n+1}

Pressure correction: Helmholtz corrector step

Discretization of Helmholtz equation

$$
\nabla \cdot\left(\frac{\nabla p^{n+1}}{\rho^{*}}\right)-\frac{p^{n+1}}{(\Delta t)^{2}\left(\rho c^{2}\right)^{*}}=\frac{\nabla \cdot \vec{u}^{*}}{\Delta t}-\frac{p^{*}}{(\Delta t)^{2}\left(\rho c^{2}\right)^{*}}
$$

- Suppose, in step 1 , finite-volume method is being used, yielding cell-average data for Helmholtz equation
- Suppose pressure p is defined as point-wise value at cell-edge (staggered grid approach)
- Employ standard 2nd or 4th order finite-difference approximation to Helmholtz equation, yielding (sparse) linear system to be solved for pressure

Pressure correction: Helmholtz corrector step

After Helmholtz solve, continue

- Phasic density update

$$
\left(\alpha_{k} \rho_{k}\right)^{n+1}=\left(\alpha_{k} \rho_{k}\right)^{*} \cdot \exp \left(-\Delta t \nabla \cdot \vec{u}^{n+1}\right)
$$

where divergence of velocity field is

$$
\nabla \cdot \vec{u}^{n+1}=-\frac{1}{\Delta t\left(\rho c^{2}\right)^{*}}\left(p^{n+1}-p^{*}\right)
$$

- Velocity update

$$
\vec{u}^{n+1}=\vec{u}^{*}-\Delta t \frac{\nabla p^{n+1}}{\rho^{n+1}}
$$

where $\rho^{n+1}=\left(\alpha_{1} \rho_{1}\right)^{n+1}+\left(\alpha_{2} \rho_{2}\right)^{n+1}$

Pressure correction scheme: Conservative HRM

PC-based scheme in conservative formulation assumes advection part non-advection part

$$
\begin{array}{ll}
\partial_{t}\left(\alpha_{1} \rho_{1}\right)+\nabla \cdot\left(\alpha_{1} \rho_{1} \vec{u}\right)=0 & \partial_{t}\left(\alpha_{1} \rho_{1}\right)=0 \\
\partial_{t}\left(\alpha_{2} \rho_{2}\right)+\nabla \cdot\left(\alpha_{2} \rho_{2} \vec{u}\right)=0 & \partial_{t}\left(\alpha_{2} \rho_{2}\right)=0 \\
\partial_{t}(\rho \vec{u})+\nabla \cdot(\vec{u} \otimes \vec{u})=0 & \partial_{t}(\rho \vec{u})=-\nabla p+\rho \vec{g} \\
\partial_{t} \alpha_{1}+\vec{u} \cdot \nabla \alpha_{1}=0 & \partial_{t} \alpha_{1}=\mu\left(p_{1}-p_{2}\right)
\end{array}
$$

- Apply fractional step method as usual
- Take attentions to ensure method conservative in each step

Future perspectives

6 -equation single-velocity 2 -phase model with stiff mechanical, thermal, \& chemical relaxations reads

$$
\begin{aligned}
& \partial_{t}\left(\alpha_{1} \rho_{1}\right)+\nabla \cdot\left(\alpha_{1} \rho_{1} \vec{u}\right)=\dot{m} \\
& \partial_{t}\left(\alpha_{2} \rho_{2}\right)+\nabla \cdot\left(\alpha_{2} \rho_{2} \vec{u}\right)=-\dot{m} \\
& \partial_{t}(\rho \vec{u})+\nabla \cdot(\rho \vec{u} \otimes \vec{u})+\nabla\left(\alpha_{1} p_{1}+\alpha_{2} p_{2}\right)=0 \\
& \partial_{t}\left(\alpha_{1} E_{1}\right)+\nabla \cdot\left(\alpha_{1} E_{1} \vec{u}+\alpha_{1} p_{1} \vec{u}\right)+\mathcal{B}(q, \nabla q)= \\
& \quad \mu p_{I}\left(p_{2}-p_{1}\right)+\mathcal{Q}+e_{I} \dot{m} \\
& \partial_{t}\left(\alpha_{2} E_{2}\right)+\nabla \cdot\left(\alpha_{2} E_{2} \vec{u}+\alpha_{2} p_{2} \vec{u}\right)-\mathcal{B}(q, \nabla q)= \\
& \quad \mu p_{I}\left(p_{1}-p_{2}\right)-\mathcal{Q}-e_{I} \dot{m} \\
& \partial_{t} \alpha_{1}+\vec{u} \cdot \nabla \alpha_{1}=\mu\left(p_{1}-p_{2}\right)+\frac{\mathcal{Q}}{q_{I}}+\frac{\dot{m}}{\rho_{I}}
\end{aligned}
$$

$\mathcal{B}(q, \nabla q)$ is non-conservative product (q : state vector)

$$
\mathcal{B}=\vec{u} \cdot\left[Y_{1} \nabla\left(\alpha_{2} p_{2}\right)-Y_{2} \nabla\left(\alpha_{1} p_{1}\right)\right]
$$

Phase transition model: 6-equation

$\mu, \theta, \nu \rightarrow \infty$: instantaneous exchanges (relaxation effects)

1. Volume transfer via pressure relaxation: $\mu\left(p_{1}-p_{2}\right)$

- μ expresses rate toward mechanical equilibrium $p_{1} \rightarrow p_{2}$, \& is nonzero in all flow regimes of interest

2. Heat transfer via temperature relaxation: $\theta\left(T_{2}-T_{1}\right)$

- θ expresses rate towards thermal equilibrium $T_{1} \rightarrow T_{2}$,

3. Mass transfer via thermo-chemical relaxation: $\nu\left(g_{2}-g_{1}\right)$

- ν expresses rate towards diffusive equilibrium $g_{1} \rightarrow g_{2}$, \& is nonzero only at 2 -phase mixture \& metastable state

$$
T_{\text {liquid }}>T_{\text {sat }}
$$

Expansion wave problem: Cavitation test

Saurel et al. (JFM 2008) \& Zein et al. (JCP 2010):

- Liquid-vapor mixture $\left(\alpha_{\text {vapor }}=10^{-2}\right)$ for water with

$$
\begin{aligned}
& p_{\text {liquid }}=p_{\text {vapor }}=1 \text { bar } \\
& T_{\text {liquid }}=T_{\text {vapor }}=354.7284 \mathrm{~K}<T^{\text {sat }} \\
& \rho_{\text {vapor }}=0.63 \mathrm{~kg} / \mathrm{m}^{3}>\rho_{\text {vapor }}^{\text {sat }}, \quad \rho_{\text {liquid }}=1150 \mathrm{~kg} / \mathrm{m}^{3}>\rho_{\text {liquid }}^{\text {sat }} \\
& g^{\text {sat }}>g_{\text {vapor }}>g_{\text {liquid }}
\end{aligned}
$$

- Outgoing velocity $u=2 \mathrm{~m} / \mathrm{s}$

	\leftarrow Membrane
$\vec{u} \rightarrow \vec{u}$	

Expansion wave problem: Sample solution

Cavitation pocket formation \& mass transfer

Expansion wave problem: Sample solution

Equilibrium Gibbs free energy inside
cavitation pocket

Expansion wave problem: Phase diagram

Solution remains in 2-phase mixture; phase separation has not reached

Expansion wave $\vec{u}=500 \mathrm{~m} / \mathrm{s}$: Phase diagram

With faster $\vec{u}=500 \mathrm{~m} / \mathrm{s}$, phase separation becomes more evident

Expansion wave $\vec{u}=500 \mathrm{~m} / \mathrm{s}$: Sample solution

Equilibrium

Gibbs free energy inside
cavitation pocket

Dodecane 2-phase Riemann problem

Saurel et al. (JFM 2008) \& Zein et al. (JCP 2010):

- Liquid phase: Left-hand side ($0 \leq x \leq 0.75 \mathrm{~m}$)

$$
\left(\rho_{v}, \rho_{l}, u, p, \alpha_{v}\right)_{L}=\left(2 \mathrm{~kg} / \mathrm{m}^{3}, 500 \mathrm{~kg} / \mathrm{m}^{3}, 0,10^{8} \mathrm{~Pa}, 10^{-8}\right)
$$

- Vapor phase: Right-hand side ($0.75 \mathrm{~m}<x \leq 1 \mathrm{~m}$)

$$
\left(\rho_{v}, \rho_{l}, u, p, \alpha_{v}\right)_{R}=\left(2 \mathrm{~kg} / \mathrm{m}^{3}, 500 \mathrm{~kg} / \mathrm{m}^{3}, 0,10^{5} \mathrm{~Pa}, 1-10^{-8}\right)
$$

\leftarrow Membrane
Liquid
Vapor

Dodecane 2-phase problem: Phase diagram

Dodecane 2-phase problem: Phase diagram

Wave path in $p-v$ phase diagram

Dodecane 2-phase problem: Sample solution

4-wave
structure:
Rarefaction, phase, contact, \& shock

Dodecane 2-phase problem: Sample solution

Density $\left(\log \left(\mathrm{kg} / \mathrm{m}^{3}\right)\right)$

Velocity (m / s)

Pressure (log(bar))

Vapor mass fraction
Vapor volume fraction

All physical quantities are discontinuous across phase boundary

High-pressure fuel injector

With thermo-chemical relaxation No thermo-chemical relaxation

Vapor volume fraction

Vapor mass fraction

Vapor temperature

Vapor volume fraction

Vapor mass fraction

Mixture density

Vapor temperature

Thank you

[^0]: ${ }^{1}$ i.e., new state is expressed solely in terms of present state

