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Scientific example 1: Wave-breaking problem

Problem setup

Rightward-going solitary water wave travels towards a
step-like reef on right



Wave-breaking problem: Schlieren-type image
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Wave-breaking problem: Schlieren-type image
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Wave-breaking problem: Gauge diagnosis
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Wave-breaking problem: CPU time Diagnosis

Method Mesh CPU time CPU type
Compressible 1 400× 50 6756 AMD

800× 100 55253 Opteron 2220
1600× 200 476429 2.8GHz

Compressible 2 1500× 200 172800 Alpha 666 MHz

Pre compressible 1500× 200 146400 Intel Xeon 3.0GHz

Incompressible 1200× 200 273600 Itanium 1.4GHz



Scientific example 2: Water column collapse

Problem setup

Water column dimension: a× 2a (a = 0.06m)

Gravity is directed downward

Results shown below are run with 200× 60 grid
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Water column collapse: Pseudo-color plot

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t = 0.066s

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t = 0.109s



Water column collapse: Pseudo-color plot
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Water column collapse: Pseudo-color plot
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Column collapse: Wave front diagnosis (Meshes)
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Column collapse: Wave front diagnosis (Methods)
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Column collapse: CPU timing diagnosis

Method Mesh CPU time CPU type
Compressible solver 100× 30 492 AMD

200× 60 3782 Opteron 2220
400× 120 31783 2.8GHz

Precond. compressible 100× 30 352 Intel Core 2
200× 60 2453 Duo 3.0GHz
400× 120 21780

Incompressible solver 200× 60 9804 Intel Pentium 4
3.4GHz

Mach-uniform solver 200× 60 129 Intel Core i7
2.2GHz



Water column collapse: Large time solution
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Water column collapse: Large time solution
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Water column collapse: Large time solution
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Computed solutions becomes chaotic at later time

Is this physically correct or simply numerical artifact ? (Issues
to be resolved as compared with laboratory experiments, for
example, for numerical validation)



Liquid-falling problem
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Liquid-falling problem: Large time



Weakly compressible 2-phase flow: Overview

Challenges for classical compressible flow solver

Accuracy (due to incorrect pressure fluctuations)

Efficiency (due to small time step)

Existing methods for modeling low Mach flow

1. Density-based approach

low Mach preconditioning for accuracy
Dual-time or implicit for efficiency

2. Pressure-based approach

Pressure Poisson solver for accuracy
Particle-velocity based advection for efficiency

3. Multiscale asymptotic-based approximations



Talk outline

1. Compressible 1-phase flow: Overview

Model

Euler’s equations

Numerics

Density-based method
Pressure-based method

2. Compressible 2-phase flow

Model

Homogeneous relaxation models

Numerics

Density-based method
Pressure-based method

3. Future perspectives



Compressible gas dynamics: 1 phase

Compressible Euler’s equations in conservation form is

∂tρ+∇ · (ρ~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = 0

∂t (ρE) +∇ · (ρE~u+ p~u) = 0

(1)

Assume fluid constitutive law satisfies stiffened gas EOS

p (ρ, e) = (γ − 1) ρe− γp∞ (2)

For air γ = 1.4, p∞ = 0

For water γ = 4.4, p∞ = 6.0× 108Pa

For stone γ = 1.66, p∞ = 1.12× 1010Pa

Model is hyperbolic with information propagating at speeds ~u,
~u− c & ~u+ c; c is sound speed



Low Mach number flow: Explicit method

For low speed flows, when effect of sound waves is
unimportant to overall solution, numerical simulation based
on (1) with explict time-discretization 1 is inefficient

This is because for stability explicit method is subject to CFL
(Courant-Friedrichs-Lewy) time step constraint

∆t ≤ min

(

∆x

|u|+ c

)

= min

(

∆x

c(M + 1)

)

, M =
|u|

c

For very low Mach number flow, M ≪ 1, this is

∆t ∼
∆x

c
=⇒ ∆x ∼ |u|

c

|u|
∆t =

1

M
|u|∆t

i.e., 1/M timesteps for interface to move one mesh zone

1
i.e., new state is expressed solely in terms of present state



Low Mach number flow: Explicit method

M ≪ 1, severe time step restriction for explicit method

tn

tn +∆t

∆x ∆x

uL − cL uR + cR

u

Desirable to reformulate (1) to filter out sound waves, while
retaining compressibility effects, yielding timestep constraint

∆t ≤ min

(

∆x

|u|

)

Alternatively, employ implicit time-discretization to allow
larger time step for stability



Low Mach number approximations: Overview

Approaches for low Mach number approximations

1. Incompressible hydrodynamics
Formally M → 0 limit of Navier-Stokes equations;
velocity satisfies

∇ · ~u = 0 =⇒
Dρ

Dt
= 0

No compressibility effects modeled in this approximation

2. Anelastic hydrodynamics (used in atmospheric sciences)
Velocity & density satisfy constraint equation

∇ · (ρ0~u) = 0 (ρ0 variant hydrostatic density)

Gatti-Bono & Colella (JCP 2006): An anelastic allspeed
projection method for gravitationally stratified flows



Low Mach number approximations: Overview

3. Pseudo-incompressibility hydrodynamics
Velocity satisfies constraint equation

∇ · (α~u) = β

for some α & β depending on class of problems

Almgren, Bell, Rendleman & Zingale (APJ 2006): Low
Mach number modeling of type Ia supernovae. I.
Hydrodynamics

4. Low Mach number preconditioning

Guillard & Murrone (CAF 2004): On the behavior of
upwind schemes in the low Mach number limit: II.
Godunov type schemes

LeMartelot, Nkonga, & Saurel (JCP 2013): Liquid and
liquidgas flows at all speeds



Compressible gas dynamics: Scaling analysis

Define material derivative as

D

Dt
= ∂t + ~u · ∇

Write (1) in primitive form with respect to ρ, ~u, & p as

Dρ

Dt
+ ρ ∇ · ~u = 0

D~u

Dt
+

1

ρ
∇p = 0

Dp

Dt
+ ρc2 ∇ · ~u = 0

(3)

Introduce dimensionless variables

ρ̃ =
ρ

ρ0
, ~̃u =

~u

u0
, p̃ =

p

ρ0c
2
0

, ~̃x =
~x

x0
, t̃ =

u0t

x0



Compressible gas dynamics: Scaling analysis

With that, dimensionless form of (3) is

Dρ̃

Dt̃
+ ρ̃ ∇̃ · ~̃u = 0

D~̃u

Dt̃
+

1

M2ρ̃
∇̃p̃ = 0

Dp̃

Dt̃
+ ρ̃c̃2 ∇̃ · ~̃u = 0

(4)

where scaling material derivative is defined as

D

Dt̃
= ∂t̃ + ~̃u · ∇̃

M = u0/c0 is reference Mach number

Drop˜ in (4) below for simplicity



Compressible gas dynamics: Incompressible scaling

Assume formal asymptotic expansion of state z of form

z = z0 +Mz1 +M2z2 + · · · as M → 0+

Substituting above into (4), we get

Order 1/M2:
∇p0 = 0

Order 1/M :
∇p1 = 0

Order 1:

∂tρ0 + ~u0 · ∇ρ0 + ρ0∇ · ~u0 = 0

∂t~u0 + ~u0 · ∇~u0 +
1

ρ0
∇p2 = 0

∂tp0 + ρ0c
2
0 ∇ · ~u0 = 0



Compressible gas dynamics: Incompressible scaling

Under condition
∂tp0 = 0 (5)

limit system at leading order tends formally to

∂tp0 + ρ0c
2
0 ∇ · ~u0 = 0 =⇒ ∇ · ~u0 = 0

∂tρ0 + ~u0 · ∇ρ0 + ρ0∇ · ~u0 = 0 =⇒ ∂tρ0 + ~u0 · ∇ρ0 = 0

∂t~u0 + ~u0 · ∇~u0 +
1

ρ0
∇p2 = 0

Simple asymptotic analysis: Compressible Euler contains

Incompressible + Acoustic

How these different phenomena organize ? No general answer



Compressible gas dynamics: Preconditioned system

To enforce (5), Turkel (JCP 1987) introduces penalization

1

M2
∂tp0 + ρ0c

2
0 ∇ · ~u0 = 0

to ensure formal convergence to incompressible solutions of
limit system, yielding leading order system (ignore subscript)

∂tρ+ ~u · ∇ρ+ ρ∇ · ~u = 0

∂t~u+ ~u · ∇~u+
1

ρ
∇p = 0

∂tp+M2~u · ∇p+M2ρc2 ∇ · ~u = 0

System is hyperbolic with wave speeds ~u, ~u− c̃−, & ~u+ c̃+;

c̃− =
(1−M2)ui +

√

(M2 − 1)2u2i + 4M2c2

2

c̃+ =
(M2 − 1)ui +

√

(M2 − 1)2u2i + 4M2c2

2



Preconditioned system: Wave speeds

Wave speed is scaled with respect to Mach number
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Now let us go to numerical schemes



Density-based implicit scheme: Conservation laws

Consider 1D hyperbolic conservation laws of form

∂tq + ∂xf(q) = 0, x ∈ [a, b], t > 0 (6)

with suitable initial & boundary conditions

q: vector of conservative variables & f : flux vector

Hyperbolicity of (6) means existence of real eigenvalues of flux
Jacobian ∂qf(q) for all q

Denote Qn
i as numerical cell-average of q at cell i & time tn

Qn
i :=

1

∆xi

∫ xi+1/2

xi−1/2

q(x, tn) dx

∆xi = ∆x: mesh size, ∆t: time step



Density-based implicit scheme: Conservation laws

Discretize (6) conservatively with backward Euler in time

Qn+1
i = Qn

i −
∆t

∆x

(

F n+1

i+1/2 − F
n+1

i−1/2

)

(7)

with numerical flux

Fi+1/2 =
1

2

[

f(Qi) + f(Qi+1)−Di+1/2(Qi+1 −Qi)
]

(8)

Di+1/2 is so-called diffusion matrix &, e.g., assumes

1. Di+1/2 =
∆x

∆t
I (Lax-Friedrichs)

2. Di+1/2 = ai+1/2I (Rusanov)

ai+1/2 = max
(

|f
′

(Qi)|, |f
′

(Qi+1)|
)

3. Di+1/2 = |Âi+1/2| (Upwind)

Âi+1/2 = (∂qf)i+1/2 (average matrix)



Implicit conservative method: Matrix equations

Denote variation of Qi in time

∆Qi = Qn+1
i −Qn

i

To approximate F n+1

i±1/2, one may linearize F n+1

i±1/2 via Taylor
series expansions as

F n+1

i+1/2 = F
(

Qn+1
i , Qn+1

i+1

)

= F n
i+1/2 +

(

∂Fi+1/2

∂Qi

)n

∆Qi +

(

∂Fi+1/2

∂Qi+1

)n

∆Qi+1

F n+1

i−1/2 = F
(

Qn+1
i−1 , Q

n+1
i

)

= F n
i−1/2 +

(

∂Fi−1/2

∂Qi−1

)n

∆Qi−1 +

(

∂Fi−1/2

∂Qi

)n

∆Qi



Implicit conservative method: Matrix equations

With that, it follows (7) satisfies block tridiagonal linear
system of equations for ∆Q as

B−1∆Qi−1 +B0∆Qi +B1∆Qi+1 =

−
∆t

∆x

(

F n
i+1/2 − F

n
i−1/2

)
(9a)

block matrices B−1, B0, & B1 are

B−1 = −
∆t

∆x

(

∂Fi−1/2

∂Qi−1

)n

(9b)

B0 = I −
∆t

∆x

(

∂Fi−1/2

∂Qi

)n

+
∆t

∆x

(

∂Fi+1/2

∂Qi

)n

(9c)

B1 =
∆t

∆x

(

∂Fi+1/2

∂Qi+1

)n

(9d)



Implicit conservative method: Matrix equations

Approaches for determining numerical fluxes Fi±1/2 & various
flux derivatives in (9) include

1. Use (8) as basis & take derivatives, yielding

B−1 = −
∆t

2∆x

(

An
i−1 +Dn

i−1/2

)

B0 = I −
∆t

2∆x

(

An
i −D

n
i−1/2

)

+
∆t

2∆x

(

An
i +Dn

i+1/2

)

B1 =
∆t

2∆x

(

An
i+1 −D

n
i+1/2

)

2. Take derivatives to general wave-propagation-based flux

Fi+1/2 =
1

2

[

f(Qi) + f(Qi+1)−
Mw
∑

m=1

|λmi+1/2| W
m
i+1/2

]

(10)



Implicit conservative method: Matrix equations

Suppose λmi+1/2 & Wm
i+1/2, m = 1, 2, . . . ,Mw are defined via

solution of Riemann problem at each cell edge (see below)

With that, in determining B−1, for instance, we perform

∂Fi−1/2

∂Qi−1

=
∂

∂Qi−1

(

1

2

[

f(Qi−1) + f(Qi)−

Mw
∑

m=1

|λmi−1/2| W
m
i−1/2

])

=
1

2
Ai−1 −

1

2

Mw
∑

m=1

[

Wm
i−1/2

(

∇Qi−1
|λmi−1/2|

)

+

|λmi−1/2|

(

∂Wm
i−1/2

∂Qi−1

)]

yielding need to compute terms such as

∇Qi−1
|λmi−1/2| &

∂Wm
i−1/2

∂Qi−1

, m = 1, 2, . . . ,Mw



Riemann problem: Gas dynamics

Now for compressible Euler equations in 1D, Riemann problem
is Cauchy problem that consists of

∂tq + ∂xf(q) = 0, x ∈ R, t > 0 (11a)

with

q =





ρ
ρu
ρE



 , f(q) =





ρu
ρu2 + p
ρEu+ pu



 (11b)

as for model equations, & piece-wise constant data

q(x, 0) =

{

qL if x < 0

qR if x > 0
(11c)

as for initial condition



Riemann problem: Hyperbolicity

To close model & Riemann problem, assume ideal gas law

p = (γ − 1)ρe

Jacobian matrix of f in (11), denoted by A, is

A =
∂f(q)

∂q
=





0 1 0
γ−3

2
u2 −(γ − 1)u γ − 1

γ−1

2
u3 −Hu H − (γ − 1)u2 γu





Its eigen-decomposition AR = RΛ, is with

Λ = diag(u− c, u, u+ c)

R =





1 1 1
u− c u u+ c
H − uc 1

2
u2 H + uc





c =
√

γp/ρ is speed of sound & H = (e+ p)/ρ is specific
enthalpy



Riemann problem: Basic solution structure

Elementary waves for Riemann problem in x-t plane

x

t

qL qR

rarefaction contact

shock



Riemann problem: Basic solution structure

Snap shot of density for Sod Riemann problem
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Riemann problem: Basic solution structure

Snap shot of pressure for Sod Riemann problem
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Approximate Riemann solver: HLL

Harten-van Leer-Lax (HLL) approximate Riemann solver
assumes 2-wave structure of solution

x

t

qL qR

λ1

λ2qm

W1 = qm − qL

W2 = qR − qm



Approximate Riemann solver: HLL

In HLL solver for Euler equations, left- & right-most speeds λ1

& λ2 can be chosen, e.g., from estimate proposed by Davis,

λ1 = min (uR − cR, uL − cL)

λ2 = max (uR + cR, uL + cL)
(12)

Define qm as average of solution over [λ1T, λ2T ] at time T ,

qm =
1

(λ2 − λ1)T

∫ λ2T

λ1T

q(x, T ) dx

qL qR

λ1T λ2T
qm



Approximate Riemann solver: HLL

Using integral form of conservation laws over
[λ1T, λ2T ]× [0, T ], it follows

qm =
λ2qR − λ

1qL − f(qR) + f(qL)

λ2 − λ1

f(qι) is flux evaluated at state qι for ι = L, R, yielding

W1 = qm − qL

W2 = qR − qm

Now return to computing Bk, k = −1, 0, 1

Since definition of λ1 & λ2 in (12), it leads to assuming

∇qιλ
1 = ∇qιλ

2 = 0 for ι = L,R



Matrix equations: HLL-based solver

As to derivatives of W1, there are

∂W1

∂qL
=

∂

∂qL
(qm − qL)

=
∂

∂qL

(

λ2qR − λ
1qL − f(qR) + f(qL)

λ2 − λ1

)

− 1

=

(

−λ2I +
∂f(qL)

∂qL

)/

(

λ2 − λ1
)

∂W1

∂qR
=

∂

∂qR
(qm − qL)

=
∂

∂qR

(

λ2qR − λ
1qL − f(qR) + f(qL)

λ2 − λ1

)

=

(

λ2I −
∂f(qR)

∂qR

)/

(

λ2 − λ1
)



Matrix equations: HLL-based solver

Now to derivaives of W2, there are

∂W2

∂qL
=

∂

∂qL
(qR − qm)

= −
∂

∂qL

(

λ2qR − λ
1qL − f(qR) + f(qL)

λ2 − λ1

)

= −

(

−λ1I +
∂f(qL)

∂qL

)/

(

λ2 − λ1
)

∂W2

∂qR
=

∂

∂qR
(qR − qm)

= 1−
∂

∂qR

(

λ2qR − λ
1qL − f(qR) + f(qL)

λ2 − λ1

)

=

(

−λ1I +
∂f(qR)

∂qR

)/

(

λ2 − λ1
)



Matrix equations: HLL-based solver

Recall B−1 = −
∆t

∆x

(

∂Fi−1/2

∂Qi−1

)n

B0 = I −
∆t

∆x

(

∂Fi−1/2

∂Qi

)n

+
∆t

∆x

(

∂Fi+1/2

∂Qi

)n

B1 =
∆t

∆x

(

∂Fi+1/2

∂Qi+1

)n

Denote Fi−1/2 = FLR, Qi−1 = qL, & Qi = qR. We have

∂FLR

∂qL
=

1

2
AL −

1

2

(

|λ1|
∂W1

∂qL
+ |λ2|

∂W2

∂qL

)

=
1

2
AL −

1

2

[

|λ1|

λ2 − λ1
(

−λ2I + AL

)

+
|λ2|

λ2 − λ1
(

λ1I − AL

)

]



Matrix equations: HLL-based solver

In addition,

∂FLR

∂qR
=

1

2
AR −

1

2

[

|λ1|

λ2 − λ1
(

λ2I − AR

)

+
|λ2|

λ2 − λ1
(

−λ1I + AR

)

]

It is easy to show if λ1i+1/2 = −λ
2
i+1/2 for all i, we recoover

BHLL
ι = BLLF

ι , ι = −, 0, +

Using general wave-propagation form numerical fluxes (10), we
may relax dependence on characteristic decomposition of
model equations; difficult to do in some instances



Implicit conservative scheme as M → 0

Recall that asymptotic analysis show that when M → 0,
solution of pressure is of form

p(~x, t) = p0(t) +Mp1(t) +M2p2(~x, t) + · · · (13)

In discrete case, as M → 0, it is known that (cf. Guillard &
Viozat CAF 1999) computed pressure obtained using above
implicit scheme with Roe solver would behave like

p(~x, t) = p0(t) +Mp1(~x, t)

this is clearly different from (13)



Preconditioned system & scheme

To obtain desire asymptotic behavior of computed pressure in
form (13), preconditioned dissipation is proposed, i.e.,

Fi+1/2 =
1

2

[

f(Qi) + f(Qi+1)− P
−1

i+1/2|Pi+1/2Ai+1/2|(Qi+1 −Qi)
]

Here P is a chosen preconditioned matrix which scales sound
speed as seen before

In essence, original conservation law (6) is modified by

∂tq + P∂xf(q) = 0



Preconditioned system & scheme

To obtain desire asymptotic behavior of computed pressure in
form (13), preconditioned dissipation is proposed, i.e.,

Fi+1/2 =
1

2

[

f(Qi) + f(Qi+1)− P
−1

i+1/2|Pi+1/2Ai+1/2|(Qi+1 −Qi)
]

Here P is a chosen preconditioned matrix which scales sound
speed as seen before

In essence, original conservation law (6) is modified by

∂tq + P∂xf(q) = 0

This is work ongoing; we next discuss pressure-based scheme



Pressure-based method: Primitive case

Non-conservative formulation: Yabe & coworkers

Write Euler’s equations in non-conservative form

∂tq + ~u · ∇q = ψ(q)

q =
[

ρ, ~u, p
]T

ψ =
[

−ρ∇ · ~u, −1

ρ
∇p, −ρc2∇ · ~u

]T

Perform non-advection step first to solve

∂tq = ψ(q)

Perform advection step next to solve

∂tq + ~u · ∇q = 0



Pressure-based method: Primitive case

In non-advection step, say in 2D, we assume ∆ρ & ∆e can be
well-approximated by

∆ρ = ρn+1 − ρn = −ρn∆t
(

Dxu
n+1 +Dyv

n+1
)

∆e = en+1 − en = −
pn

ρn
∆t
(

Dxu
n+1 +Dyv

n+1
)

Substituting them into basic thermodynamic relation

∆p = pn+1 − pn =

(

∂p

∂ρ

)n

e

∆ρ+

(

∂p

∂e

)n

ρ

∆e, yielding

∆p = −
(

ρc2
)n

∆t
(

Dxu
n+1 +Dyv

n+1
)



Pressure-based method: Primitive case

From

∆u = un+1 − un = −
Dxp

n+1

ρn
∆t

∆v = vn+1 − vn = −
Dyp

n+1

ρn
∆t

Substituting un+1 & vn+1 into

∆p = −
(

ρc2
)n

∆t
(

Dxu
n+1 +Dyv

n+1
)

,

yielding Helmholtz equation for pn+1 as

Dx

(

Dxp
n+1

ρn

)

+Dy

(

Dyp
n+1

ρn

)

=

pn+1 − pn

(ρc2)n(∆t)2
+

1

∆t
(Dxu

n +Dyv
n)



Pressure-based method: Conservaive form

Conservative formulation: Xiao, Sussman, Fedwik, · · ·

Use Euler’s equations in conservation form

∂tq +∇ · f(q) = ψ(q)

q =
[

ρ, ρ~u, ρE
]T

f(q) =
[

ρ~u, ρ~u⊗ ~u, ρE~u
]T

ψ =
[

0, −∇p, −∇ · (p~u)
]T

Perform colorred advection step first to solve

∂tq +∇ · f(q) = 0

Perform non-advection step next to solve

∂tq = ψ(q)



Pressure-based method: Conservaive form

First, update advection terms of conserved variables

ρn+1 = ρn −∆t∇ · (ρ~u)n

(ρ~u)n+1 = (ρ~u)n −∆t∇ · (ρ~u⊗ ~u)n −∆t∇pn+1

En+1 = En −∆t∇ · (E~u)n −∆t∇ · (p~u)n+1

Non-advection momentum & energy updates are

(ρ~u)n+1 = (ρ~u)∗ −∆t∇pn+1

En+1 = E∗ −∆t∇ · (p~u)n+1 , yielding also

∇ · ~un+1 = ∇ · ~u∗ −∆t∇ ·

(

∇pn+1

ρn+1

)



Pressure-based method: Conservaive form

∇ · ~un+1 = 0 in case of incompressible flow, here it follows

(pt + ~u · ∇p)n ≈ −
(

ρc2
)n
∇ · ~un+1

approximately or

pn+1 − pn

∆t
+ (~u · ∇p)n ≈ −

(

ρc2
)n
∇ · ~un+1

This leads to Helmholtz equation for pressure

pn+1−(ρc2)n∆t2∇·

(

∇pn+1

ρn+1

)

= pa−(ρc2)n∆t∇· ~u∗, where

pa = pn +∆t (~un · ∇pn)



Pressure-based method: Conservaive form

∇ · ~un+1 = 0 in case of incompressible flow, here it follows

(pt + ~u · ∇p)n ≈ −
(

ρc2
)n
∇ · ~un+1

approximately or

pn+1 − pn

∆t
+ (~u · ∇p)n ≈ −

(

ρc2
)n
∇ · ~un+1

This leads to Helmholtz equation for pressure

pn+1−(ρc2)n∆t2∇·

(

∇pn+1

ρn+1

)

= pa−(ρc2)n∆t∇· ~u∗, where

pa = pn +∆t (~un · ∇pn)

We next move to 2-phase flow case



Compressible 2-phase flow: Mathematical Models

In this talk, our interest is on following class of model for
compressible 2-phase flow

1. 7-equation model (Baer-Nunziato type)

2. Reduced 5-equation model (Kapila type)

3. Homogeneous 6-equation model

Saurel et al. (JCP 2009), Pelanti & Shyue (JCP 2014)



Homogeneous 2-phase flow model: Barotropic case
One simple homogeneous (1 velocity, 1 pressure) model for
barotropic 2-phase flow is

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = 0

Assume constitutive law for each fluid phase satisfies

pk (ρk) = Ak

(

ρk
ρ0k

)γ

− Bk (Tait equation of state)

Equilibrium pressure p = p1 = p2 follows saturation relation

α1 + α2 =
α1ρ1
ρ1(p)

+
α2ρ2
ρ2(p)

= 1

yielding nonlinear algebraic equation to be solved



Homogeneous 2-phase flow model: Sound speed

Model is hyperbolic with equilibrium sound speed cp:

1

ρc2p
=

α1

ρ1c21
+

α2

ρ2c22
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c p

2-phase (air-water) Non-monotonic cp
leads to stiffness
in equations &
difficulties in
numerical solver,
e.g., positivity-
preserving in
volume fraction &
pressure



Homogeneous relaxation model: Barotropic case

Numerically, it is more stable to consider relaxation model

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇ (α1p1 + α2p2) = 0

∂tα1 + ~u · ∇α1 = µ (p1 − p2)

Write model in compact form as

∂tq +∇ · f(q) + w(q,∇q) = ψµ(q)

Compute approximate solution based on fractional step:
1. Homogeneous hyperbolic step

∂tq +∇ · f(q) + w(q,∇q) = 0

2. Source-term relaxation step as parameter µ→∞

∂tq = ψµ(q) =⇒ p1

(

α1ρ1
α1

)

− p2

(

α2ρ2
1− α1

)

= 0



Homogeneous relaxation model: Hyperbolic step

Sound speed in hyperbolic step, denoted by cf , is

ρc2f =

2
∑

k=1

αkρkc
2
k (frozen speed)

which satisfies sub-characteristic condition cp ≤ cf
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10

1

10
2

10
3

10
4

 

 

frozen
p relax

αwater

c p
&
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Monotonic cf
gives better
conditioning of
hyperbolic step,
but is less efficient
due to CFL
time-step
constraint



Homogeneous relaxation model: Frozen sound

speed

c2f = ∂ρ

(

2
∑

k=1

αkpk

)

Yk,αk,sk

=
2
∑

k=1

αk∂ρpk

=
2
∑

k=1

αk (∂ρkpk) (∂ρρk) =
2
∑

k=1

αkc
2
k (∂ρρk)

=
2
∑

k=1

Ykc
2
k

dYk = d

(

αkρk
ρ

)

=
ραkdρk − αkρkdρ

ρ2

=
αk

ρ

(

dρk −
ρk
ρ
dρ

)

= 0 =⇒
dρk
dρ

=
ρk
ρ



Homogeneous relaxation model: Asymptotics

Take formal asymptotic expansion ansatz of solution

q = q0 + εq1 + · · ·

Derive equilibrium equation for q0 as µ = 1/ε→∞ (ε→ 0+)

Recall material derivative as

D

Dt
= ∂t + ~u · ∇

We find

Dα1

Dt
=

1

ε
(p1 − p2)

Dpk
Dt

=
∂pk
∂ρk

Dρk
Dt

= c2k
Dρk
Dt

= −
c2k
αk

(

ρk
Dαk

Dt
+ αkρk∇ · ~u

)

=⇒
Dpk
Dt

+ ρkc
2
k∇ · ~u = −

ρkc
2
k

αk

Dαk

Dt



Homogeneous relaxation model: Asymptotics

Substituting asymptotic expansions to equations, we get

D

Dt

(

α0
1 + εα1

1 + · · ·
)

=
1

ε

[(

p01 − p
0
2

)

+ ε
(

p11 − p
1
2

)

+ · · ·
]

D

Dt

(

p0k + εp1k + · · ·
)

+
(

ρ0kc
02

k + ερ1kc
12

k + · · ·
)

∇ · ~u =

−

(

ρ0kc
02

k + ερ1kc
12

k + · · ·

α0
k + εα1

k + · · ·

)

D

Dt

(

α0
k + εα1

k + · · ·
)

Collecting equal power of ε, we have

O(1/ε) p01 = p02 ≡ p0

O(1)
Dp0k
Dt

+ ρ0kc
02

k ∇ · ~u = −

(

ρ0kc
02

k

α0
k

)

Dα0
k

Dt



Homogeneous relaxation model: Asymptotics

=⇒
Dp01
Dt

+ ρ01c
02

1 ∇ · ~u = −

(

ρ01c
02

1

α0
1

)

(

p11 − p
1
2

)

Dp02
Dt

+ ρ02c
02

2 ∇ · ~u = −

(

ρ02c
02

2

α0
2

)

(

p12 − p
1
1

)

Subtracting former two equations & with p01 = p02, we find

(

ρ01c
02

1 − ρ
0
2c

02

2

)

∇ · ~u =

(

ρ01c
02

1

α0
1

+
ρ02c

02

2

α0
2

)

(

p12 − p
1
1

)

i.e.,

Dα0
1

Dt
= p11 − p

1
2 =

(

ρ02c
02

2 − ρ
0
1c

02

1

ρ01c
02

1 /α
0
1 + ρ02c

02

2 /α
0
2

)

∇ · ~u



Homogeneous equilibrium model

Ignore superscript 0 to simplify notation

In summary, as µ→∞ leading order approximation of
homogeneous relaxation model (HRM) gives so-called
homogeneous equilibrium model (HEM) & takes

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = 0

∂tα1 + ~u · ∇α1 =

(

ρ2c
2
2 − ρ1c

2
1

ρ1c21/α1 + ρ2c22/α2

)

∇ · ~u,

Mixture pressure p = α1p1 + α2p2

p1 → p2 means p approaches towards mechanical equilibrium



Homogeneous equilibrium model: Volume fraction

Volume-fraction equation is differential form of pressure
equilibrium condition p1 (ρ1) = p2 (ρ2)

Denote K = (ρ2c
2
2 − ρ1c

2
1) / (ρ1c

2
1/α1 + ρ2c

2
2/α2).

Assume K < 0, i.e., ρ2c
2
2 < ρ1c

2
1 (phase 1 less compressible)

1. Compaction effect (K ∇ · ~u > 0)
α1 increases when ∇·~u < 0 (compression or shock waves)

2. Relaxation effect (K ∇ · ~u < 0)
α1 decreases when ∇ · ~u > 0 (expansion waves)

3. No effect
α1 remains unchanged when ∇ · ~u = 0 (contacts)



Homogeneous equilibrium model: Sound speed

Sound speed in HEM can be derived easily as

Dp

Dt
= c21

Dρ1
Dt

= c21
ρ1
α1

Dα1

Dt
− ρ1c

2
1∇ · ~u

=⇒
α1

ρ1c21

Dp

Dt
=
Dα1

Dt
− α1∇ · ~u

Analogously, we have

α2

ρ2c22

Dp

Dt
=
Dα2

Dt
− α2∇ · ~u

Adding together leads to
(

α1

ρ1c21
+

α2

ρ2c22

)

Dp

Dt
=

D

Dt
(α1 + α2)− (α1 + α2)∇ · ~u

=⇒
Dp

Dt
= −ρc2∇ · ~u,

1

ρc2
=

α1

ρ1c
2
1

+
α2

ρ2c
2
2

=
1

ρc2p



Pressure correction scheme: Primitive HRM

Begin with Mach-uniform approach for HRM in primitive form

∂t (α1ρ1) + ~u · ∇ (α1ρ1) = −α1ρ1∇ · ~u

∂t (α2ρ2) + ~u · ∇ (α2ρ2) = −α2ρ2∇ · ~u

∂t~u+ ~u · ∇~u = −
1

ρ
∇p + ~g

∂tα1 + ~u · ∇α1 = µ (p1 − p2)

Split model into advection part &

∂t (α1ρ1) + ~u · ∇ (α1ρ1) = 0

∂t (α2ρ2) + ~u · ∇ (α2ρ2) = 0

∂t~u+ ~u · ∇~u = 0

∂tα1 + ~u · ∇α1 = 0

non-advection part

∂t (α1ρ1) = −α1ρ1∇ · ~u

∂t (α2ρ2) = −α2ρ2∇ · ~u

∂t~u = −∇p/ρ+ ~g

∂tα1 = µ (p1 − p2)



Pressure correction scheme: Primitive HRM

1. Hyperbolic predictor step
Solve advection-part equations with fluid-velocity CFL

ν =
maxi |ui|∆t

∆x
≤ 1

yielding intermediate state, denoted by ∗ (easy)

2. Helmholtz corrector step
Discretize non-advection part equations semi-implicitly

(α1ρ1)
n+1 = (α1ρ1)

∗ −∆t (α1ρ1)
∗∇ · ~un+1

(α2ρ2)
n+1 = (α2ρ2)

∗ −∆t (α2ρ2)
∗∇ · ~un+1

~un+1 = ~u∗ −∆t ∇pn+1/ρ∗ +∆t~g

3. Relaxation step
Solve for αn+1

1 as µ→∞, i.e., root-finding

p1
[

(α1ρ1)
n+1/αn+1

1

]

− p2
[

(α2ρ2)
n+1/(1− αn+1

1 )
]

= 0



Pressure correction: Helmholtz corrector step

In step 2, to derive Helmholtz equation for pressure p, we begin

∂tp = (∂ρp) (∂tρ) = c2 (∂tρ)

Consistent with semi-discretized scheme for density, propose

pn+1 = p∗ −∆t
(

ρc2
)∗
∇ · ~un+1

Substituting ∇ · ~u in above with

∇ · ~un+1 = ∇ · ~u∗ −∆t∇ ·

(

∇pn+1

ρ∗

)

obtained by applying divergence to momentum equation gives

∇ · ~u∗ −∆t∇ ·

(

∇pn+1

ρ∗

)

= −
1

∆t (ρc2)∗
(

pn+1 − p∗
)

equation of Helmholtz-type for pressure pn+1



Pressure correction: Helmholtz corrector step

Discretization of Helmholtz equation

∇ ·

(

∇pn+1

ρ∗

)

−
pn+1

(∆t)2(ρc2)∗
=
∇ · ~u∗

∆t
−

p∗

(∆t)2 (ρc2)∗

Suppose, in step 1, finite-volume method is being used,
yielding cell-average data for Helmholtz equation

Suppose pressure p is defined as point-wise value at
cell-edge (staggered grid approach)

Employ standard 2nd or 4th order finite-difference
approximation to Helmholtz equation, yielding (sparse)
linear system to be solved for pressure



Pressure correction: Helmholtz corrector step

After Helmholtz solve, continue

Phasic density update

(αkρk)
n+1 = (αkρk)

∗ · exp
(

−∆t∇ · ~un+1
)

where divergence of velocity field is

∇ · ~un+1 = −
1

∆t(ρc2)∗
(

pn+1 − p∗
)

Velocity update

~un+1 = ~u∗ −∆t
∇pn+1

ρn+1

where ρn+1 = (α1ρ1)
n+1 + (α2ρ2)

n+1



Pressure correction scheme: Conservative HRM

PC-based scheme in conservative formulation assumes

advection part

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (~u⊗ ~u) = 0

∂tα1 + ~u · ∇α1 = 0

non-advection part

∂t (α1ρ1) = 0

∂t (α2ρ2) = 0

∂t (ρ~u) = −∇p + ρ~g

∂tα1 = µ (p1 − p2)

Apply fractional step method as usual

Take attentions to ensure method conservative in each
step



Future perspectives

6-equation single-velocity 2-phase model with stiff mechanical,
thermal, & chemical relaxations reads

∂t (α1ρ1) +∇ · (α1ρ1~u) = ṁ

∂t (α2ρ2) +∇ · (α2ρ2~u) = −ṁ

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) +∇ (α1p1 + α2p2) = 0

∂t (α1E1) +∇ · (α1E1~u+ α1p1~u) + B (q,∇q) =

µpI (p2 − p1) +Q+ eIṁ

∂t (α2E2) +∇ · (α2E2~u+ α2p2~u)− B (q,∇q) =

µpI (p1 − p2)−Q− eIṁ

∂tα1 + ~u · ∇α1 = µ (p1 − p2) +
Q

qI
+
ṁ

ρI
B (q,∇q) is non-conservative product (q: state vector)

B = ~u · [Y1∇ (α2p2)− Y2∇ (α1p1)]



Phase transition model: 6-equation

µ, θ, ν →∞: instantaneous exchanges (relaxation effects)

1. Volume transfer via pressure relaxation: µ (p1 − p2)

µ expresses rate toward mechanical equilibrium p1 → p2,
& is nonzero in all flow regimes of interest

2. Heat transfer via temperature relaxation: θ (T2 − T1)

θ expresses rate towards thermal equilibrium T1 → T2,

3. Mass transfer via thermo-chemical relaxation: ν (g2 − g1)

ν expresses rate towards diffusive equilibrium g1 → g2, &
is nonzero only at 2-phase mixture & metastable state
Tliquid > Tsat



Expansion wave problem: Cavitation test

Saurel et al. (JFM 2008) & Zein et al. (JCP 2010):

Liquid-vapor mixture (αvapor = 10−2) for water with

pliquid = pvapor = 1bar

Tliquid = Tvapor = 354.7284K < T sat

ρvapor = 0.63kg/m3> ρsatvapor, ρliquid = 1150kg/m3> ρsatliquid

gsat > gvapor > gliquid

Outgoing velocity u = 2m/s

← −~u ~u →

← Membrane



Expansion wave problem: Sample solution

Cavitation
pocket
formation &
mass
transfer



Expansion wave problem: Sample solution
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Expansion wave problem: Phase diagram

Solution remains in 2-phase mixture; phase separation has not
reached
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Expansion wave ~u = 500m/s: Phase diagram

With faster ~u = 500m/s, phase separation becomes more
evident
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Expansion wave ~u = 500m/s: Sample solution
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Dodecane 2-phase Riemann problem

Saurel et al. (JFM 2008) & Zein et al. (JCP 2010):

Liquid phase: Left-hand side (0 ≤ x ≤ 0.75m)

(ρv, ρl, u, p, αv)L =
(

2kg/m3, 500kg/m3, 0, 108Pa, 10−8
)

Vapor phase: Right-hand side (0.75m < x ≤ 1m)

(ρv, ρl, u, p, αv)R =
(

2kg/m3, 500kg/m3, 0, 105Pa, 1− 10−8
)

,

Liquid Vapor

← Membrane



Dodecane 2-phase problem: Phase diagram
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Dodecane 2-phase problem: Phase diagram

Wave path in p-v phase diagram
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Dodecane 2-phase problem: Sample solution
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Dodecane 2-phase problem: Sample solution

All physical
quantities
are discon-
tinuous
across phase
boundary



High-pressure fuel injector
With thermo-chemical relaxation No thermo-chemical relaxation



Thank you


