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Scientific example 1: Wave-breaking problem

Problem setup

@ Rightward-going solitary water wave travels towards a
step-like reef on right
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Wave-breaking problem: Schlieren-type image
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Wave-breaking problem: Schlieren-type image

t = 1.60s

t = 1.80s



Wave-breaking problem: Gauge diagnosis
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Wave-breaking problem: CPU time Diagnosis

Method Mesh CPU time CPU type
Compressible 1 400 x 50 6756 AMD
800 x 100 55253 Opteron 2220
1600 x 200 476429  2.8GHz

Compressible 2 1500 x 200 172800  Alpha 666 MHz
Pre compressible 1500 x 200 146400  Intel Xeon 3.0GHz

Incompressible 1200 x 200 273600  Itanium 1.4GHz




Scientific example 2: Water column collapse

Problem setup
@ Water column dimension: a x 2a (a = 0.06m)
@ Gravity is directed downward

Results shown below are run with 200 x 60 grid




Water column collapse: Pseudo-color plot

t = 0.066s




Water column collapse: Pseudo-color plot

t =0.164s

t = 0.222s




Water column collapse: Pseudo-color plot

t =0.281s




Column collapse: Wave front diagnosis (Meshes)

Water column height
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Column collapse: Wave front diagnosis (Methods)

Water column height
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Column collapse: CPU timing diagnosis

Method Mesh CPU time CPU type
Compressible solver 100 x 30 492 AMD
200 x 60 3782 Opteron 2220
400 x 120 31783 2.8GHz

Precond. compressible 100 x 30 352 Intel Core 2
200 x 60 2453 Duo 3.0GHz
400 x 120 21780

Incompressible solver 200 x 60 9804 Intel Pentium 4
3.4GHz

Mach-uniform solver 200 x 60 129 Intel Core i7
2.2GHz




Water column collapse: Large time solution

t =0.5s




Water column collapse: Large time solution

t=20.7s




Water column collapse: Large time solution

t=1.0s

Computed solutions becomes chaotic at later time

Is this physically correct or simply numerical artifact 7 (Issues
to be resolved as compared with laboratory experiments, for
example, for numerical validation)



Liquid-falling problem

t=0s




Liquid-falling problem

t=0.04s




Liquid-falling problem

t=0.08s




Liquid-falling problem

t=0.12s




Liquid-falling problem

t=0.16s




Liquid-falling problem

t=0.2s




Liquid-falling problem

t=0.24s




Liquid-falling problem

t=0.28s




Liquid-falling problem

t=0.32s




Liquid-falling problem

t=0.36s




Liquid-falling problem

t=0.4s




Liquid-falling problem

t=0.44s




Liquid-falling problem

t=0.48s




Liquid-falling problem

t=0.52s




Liquid-falling problem

t=0.56s




Liquid-falling problem

t=0.6s




Liquid-falling problem

t=0.64s




Liquid-falling problem

t=0.68s




Liquid-falling problem

t=0.72s




Liquid-falling problem

t=0.76s




Liquid-falling problem

t=0.8s




Liquid-falling problem

t=0.84s




Liquid-falling problem

t=0.88s




Liquid-falling problem

t=0.92s




Liquid-falling problem

t=0.96s




Liquid-falling problem

t=1s




Liquid-falling problem

t=1.04s




Liquid-falling problem

t=1.08s




Liquid-falling problem

t=1.12s




Liquid-falling problem

t=1.16s




Liquid-falling problem

t=1.2s




Liquid-falling problem

t=1.24s




Liquid-falling problem

t=1.28s




Liquid-falling problem

t=1.32s




Liquid-falling problem

t=1.36s




Liquid-falling problem

t=1.4s




Liquid-falling problem

t=1.44s




Liquid-falling problem

t=1.48s




Liquid-falling problem

t=1.52s




Liquid-falling problem

t=1.56s




Liquid-falling problem: Large time

t=2s




Weakly compressible 2-phase flow: Overview

Challenges for classical compressible flow solver

@ Accuracy (due to incorrect pressure fluctuations)

o Efficiency (due to small time step)

Existing methods for modeling low Mach flow
1. Density-based approach

o low Mach preconditioning for accuracy
o Dual-time or implicit for efficiency

2. Pressure-based approach

o Pressure Poisson solver for accuracy
o Particle-velocity based advection for efficiency

3. Multiscale asymptotic-based approximations



Talk outline

1. Compressible 1-phase flow: Overview
o Model
@ Euler’'s equations
o Numerics

@ Density-based method
@ Pressure-based method

2. Compressible 2-phase flow
o Model

@ Homogeneous relaxation models

o Numerics

@ Density-based method
@ Pressure-based method

3. Future perspectives



Compressible gas dynamics: 1 phase

Compressible Euler's equations in conservation form is
Op+V-(pi)=0
O (ptl) + V- (pi @ 1) +Vp=0 (1)
O (pE) + V - (pEU + pi) =0

Assume fluid constitutive law satisfies stiffened gas EOS

p(p,e) = (v —1)pe — 1 (2)
@ Forairy=14, poo =0
@ For water v = 4.4, p,, = 6.0 x 10%Pa
@ For stone 7 = 1.66, pse = 1.12 x 10'°Pa

Model is hyperbolic with information propagating at speeds ,
U —c & U+ c cis sound speed



Low Mach number flow: Explicit method

For low speed flows, when effect of sound waves is
unimportant to overall solution, numerical simulation based
on (1) with explict time-discretization ! is inefficient

This is because for stability explicit method is subject to CFL
(Courant-Friedrichs-Lewy) time step constraint

A A
At < min 2% ) i [ —2E , M:M
lu| + ¢ c(M+1) c

For very low Mach number flow, M < 1, this is

A , 1
At ~ Tx — A~ |u|i|At = —lulat

|u

i.e., 1/M timesteps for interface to move one mesh zone

lje., new state is expressed solely in terms of present state



Low Mach number flow: Explicit method

M <« 1. severe time step restriction for explicit method

t, + At

uy, — cr, UR + CR

Ax Az tn

Desirable to reformulate (1) to filter out sound waves, while
retaining compressibility effects, yielding timestep constraint

At < min (ﬁ)
|u|

Alternatively, employ implicit time-discretization to allow
larger time step for stability



Low Mach number approximations: Overview

Approaches for low Mach number approximations

1. Incompressible hydrodynamics
Formally M — 0 limit of Navier-Stokes equations;
velocity satisfies

Dp

=0
Dt

V-u=0 —

No compressibility effects modeled in this approximation

2. Anelastic hydrodynamics (used in atmospheric sciences)
Velocity & density satisfy constraint equation

V- (pot) =0 (po variant hydrostatic density)

o Gatti-Bono & Colella (JCP 2006): An anelastic allspeed
projection method for gravitationally stratified flows



Low Mach number approximations: Overview

3. Pseudo-incompressibility hydrodynamics
Velocity satisfies constraint equation

V- (ad) =
for some « & 3 depending on class of problems

o Almgren, Bell, Rendleman & Zingale (APJ 2006): Low
Mach number modeling of type la supernovae. .
Hydrodynamics

4. Low Mach number preconditioning

o Guillard & Murrone (CAF 2004): On the behavior of
upwind schemes in the low Mach number limit: II.
Godunov type schemes

o LeMartelot, Nkonga, & Saurel (JCP 2013): Liquid and
liquidgas flows at all speeds



Compressible gas dynamics: Scaling analysis

Define material derivative as
D
Dt
Write (1) in primitive form with respect to p, u, & p as

Introduce dimensionless variables
R T
pP=— U= —, p= o

Lo Ug Loy To To



Compressible gas dynamics: Scaling analysis

With that, dimensionless form of (3) is

D5 .

Py sv-i=0
Di
Di 1

+——Vp=0 4
o7 s VP (4)
Dp -

+pEV i =0
pr eV

where scaling material derivative is defined as

D - -

M = ug/cy is reference Mach number

Drop™ in (4) below for simplicity



Compressible gas dynamics: Incompressible scaling

Assume formal asymptotic expansion of state z of form
2=20+ Mz + M2z +--- as M — 0"

Substituting above into (4), we get
@ Order 1/M?*:
Vpo =0
@ Order 1/M:
Vpl =0
@ Order I:
Oypo + 1o - Vpo + poV - g = 0
1
8t60+60-V60+— Vpg =0

Po
Ao + pocy V - g =0



Compressible gas dynamics: Incompressible scaling

Under condition
315290 =0 (5)

limit system at leading order tends formally to

6tpo+pocgv-60:0 — V-iuy=0
Opo + o - Vpo+ poV g =0 = Oypo+tp-Vpy=0

L . 1
Oytig + Ug - Vg + — Vpy =0
Po
Simple asymptotic analysis: Compressible Euler contains

Incompressible + Acoustic

How these different phenomena organize 7 No general answer



Compressible gas dynamics: Preconditioned system

To enforce (5), Turkel (JCP 1987) introduces penalization
Watpo + pocg V- iy =0
to ensure formal convergence to incompressible solutions of

limit system, yielding leading order system (ignore subscript)
Op+u-Vp+pV-d=0
1
ou+u-Vi+—-—Vp=0
P
Oup + M?i-Np+ Mpc* V - il =0
System is hyperbolic with wave speeds u, @ — ¢_, & u + ¢, ;
(L= MP)u; 4 /(M2 — 1)2u2 + 4M2c?

2

(M2 = Du; + /(M2 = 1)2u? + 4M3c2
Cy =
2




Preconditioned system: Wave speeds

Wave speed is scaled with respect to Mach number

500 :
——u-C
400t 4o
300f| u
u-c
200 H|—u+c
100
0
-100}
-200¢
-300 : : : :
0 02 04 06 08 1

M

Now let us go to numerical schemes



Density-based implicit scheme: Conservation laws

Consider 1D hyperbolic conservation laws of form
Oq+0.f(q) =0, z€lab], t>0 (6)

with suitable initial & boundary conditions

q: vector of conservative variables & f: flux vector

Hyperbolicity of (6) means existence of real eigenvalues of flux
Jacobian 9, f(q) for all ¢

Denote ()" as numerical cell-average of ¢ at cell i & time ¢,

1 Tit1/2 d
n:: tTL
@& = A /m q(z,tn) dz
i—1/2

Ax; = Ax: mesh size, At: time step



Density-based implicit scheme: Conservation laws

Discretize (6) conservatively with backward Euler in time

Q= - S (m, - ) (7)
with numerical flux
1
Fiip =3 [F(Qi) + f(Qit1) = Dis12(Qipr — Q)] (8)

D;1)9 is so-called diffusion matrix &, e.g., assumes

A
1. DZ-+1/2:£I (Lax-Friedrichs)

2. Di+1/2 = a'i—l—l/QI (RusanOV)
ai1j2 = max (1 Q)] 1f' (@il
3. Di+1/2 = |Ai+1/2’ (Ulend)
Ai+1/2 = (04f)i+1/2 (average matrix)



Implicit conservative method: Matrix equations

Denote variation of (); in time
AQ; = Qi = QF

: n+1 : H n+1 H
To approximate Fiﬂ/w one may linearize Fiim via Taylor

series expansions as

F.n+1 _ F (Q;H-l’Qn—i-l)

i+1/2 i+1
n OFi112\" OFis1/2\"
-+ (52) e+ (F52) s

F), = F (@5, Q)

5Fi—1/2>n <6Fi—1/2>n
1/2 < 00, ) "9t Tag, ) A9




Implicit conservative method: Matrix equations

With that, it follows (7) satisfies block tridiagonal linear
system of equations for A(Q) as

B_1AQ;—1 + ByAQ; + BiAQi+1 =

At ., (9a)
A—x( i+1/2 E; 1/2)

block matrices B_;, By, & B are

B At 8FZ_1/2 "
B, = ( e ) (9b)
At OF;_12\" At 6E+1/2

At (OF "
Br=xs ( o ) (94)



Implicit conservative method: Matrix equations

Approaches for determining numerical fluxes F;/, & various
flux derivatives in (9) include

1. Use (8) as basis & take derivatives, yielding

A n
17 T, (A, + D 1/2)
At At
By=1- AT (A} — 1/2) + 5 N (A7 + Dz+1/2)
A n n
By = Az (A%1 — Diap)

2. Take derivatives to general wave-propagation-based flux

Fij12 =2 f(Qz + f(Qis1) — Z |>\z+1/2 2'711/2]
(10)



Implicit conservative method: Matrix equations

Suppose Ait1/2 & Wiy g m=1,2,..., M, are defined via
solution of Riemann problem at each cell edge (see below)

With that, in determining B_q, for instance, we perform
OFi 12 0
_ i + )\;n
6Qi—1 6@1 . ( [f(Q 1 f Z’ 1/2| 1/2])

My

1 1
= 5141'—1 5 Z [Wz'nh/z (VQZ-—1|/\?11/2|) +

m=1
3Wm1/2
A\
| 2_1/2|( o )}

yielding need to compute terms such as

m
i—1/2

Qi = T

VQifl ‘)‘?11/2‘ &



Riemann problem: Gas dynamics

Now for compressible Euler equations in 1D, Riemann problem
is Cauchy problem that consists of

Oq+0.f(¢) =0, z€R, t>0 (11a)
with
p pu
g=|pu|. fla=| pu’+p (11b)
pE pEu+ pu

as for model equations, & piece-wise constant data

qr. if <0
0) = 11

as for initial condition



Riemann problem: Hyperbolicity

To close model & Riemann problem, assume ideal gas law
p=(y—1)pe

Jacobian matrix of f in (11), denoted by A, is

0 1 0
0
A:#: 13y —(y—Du -1
q Lyd — Hu H—(y—1Du®  u
Its eigen-decomposition AR = RA, is with

A =diag(u — ¢, u, u+c)

1 1 1
R=|u—c U u+c
H — uc %uQ H + uc

c = +/yp/p is speed of sound & H = (e + p)/p is specific
enthalpy



Riemann problem: Basic solution structure

Elementary waves for Riemann problem in z-t plane

rarefaction contact

shock

qrL qr




Riemann problem: Basic solution structure

Snap shot of density for Sod Riemann problem
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Riemann problem: Basic solution structure

Snap shot of pressure for Sod Riemann problem

1

- t=0

0.91 —1t=0.15
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Approximate Riemann solver: HLL

Harten-van Leer-Lax (HLL) approximate Riemann solver
assumes 2-wave structure of solution

Wl =d4m — 4L t
/\1

W2 =d4dr — Gm

)\2
m

qL qr




Approximate Riemann solver: HLL

In HLL solver for Euler equations, left- & right-most speeds \!

& \? can be chosen, e.g., from estimate proposed by Davis,
A = min (ug — cg,up —c

) (ur R, UL L) (12)

A° = max (ugr + cg,ur, + cr)

Define ¢, as average of solution over [T, \*T] at time T,

1 2T
m T — ) T d

AT NT
Gm

qrL qdr




Approximate Riemann solver: HLL

Using integral form of conservation laws over
(AT, N2T) x [0, T, it follows

~ Nar—Ma— flar) + flaw)
G = VY

f(q.) is flux evaluated at state g, for . = L, R, yielding
Wl =d4m — 4L
W2 =d4dr — 4m

Now return to computing By, k= —1,0,1

Since definition of A' & A\? in (12), it leads to assuming

VM=V, \N=0 for 1=LR



Matrix equations: HLL-based solver

As to derivatives of W!, there are

) A%
oqr

oWt
dqr

- dqr

(92 (Qm - QL)
0 ()\ZQR — MNaqp — flar) + fqr)
aqL A2 — \1
9f(qr) 1
< N dqr, )/(/\2_/\)
i (Qm - QL)
0 <)\ZQR — Maqp — flar) + fqr)
)\2 _ )\1

B Oqr

= </\2I

_ 9f(qr)

dqr

)/

)

)



Matrix equations: HLL-based solver

Now to derivaives of W2, there are

> 9
90 = e (qr — Gm)

_ 0 </\2qR — Mar — flar) + f(qL)>

oqr A?— A
af(QL) 2 1

_ ( AT 4+ o )/(A -
w9
aQR = @ (QR - Qm)

0 <)\2qR — Maw — flar) + f(qL))

Oqr A2 — A

(o) f



Matrix equations: HLL-based solver

oF;_ "
Recall B_, = —ﬁ ( 20, 1/2)
i—1

B At 8E_1/2 At 6E+1/2 "
BO‘I__( 2Q, ) *E( 2Q,

At 6Fi+1/2 "
B =—
Az \ 0Qit1

Denote E—1/2 = FLR: Qi—l =dqL, & Qz = (gR- We have

OFLR A%

:—A -
aQL t (| |

1 1 AL 5
:§AL |:)\2 )\1( )\]+AL)+

+ [N

aw2)
kN

)\2_)\1

(N —Ap)



Matrix equations: HLL-based solver

In addition,
OFrp 1 L[ A |\?]
= -Ap— < NI —A —MNI+ A
Oqn 9T )\2_)\1< R)+)\2_)\1< + R)
It is easy to show if )\2+1/2 )\2+1/2 for all 4, we recoover
BHLL _ pLLF L= — 0. &

L L

Using general wave-propagation form numerical fluxes (10), we
may relax dependence on characteristic decomposition of
model equations; difficult to do in some instances



Implicit conservative scheme as M — 0

Recall that asymptotic analysis show that when M — 0,
solution of pressure is of form

p(Z,t) = po(t) + Mpy(t) + M?py(T,t) + -+ (13)
In discrete case, as M — 0, it is known that (cf. Guillard &

Viozat CAF 1999) computed pressure obtained using above
implicit scheme with Roe solver would behave like

p(f, t) - pO(t) + Mpl(*a t)

this is clearly different from (13)



Preconditioned system & scheme

To obtain desire asymptotic behavior of computed pressure in
form (13), preconditioned dissipation is proposed, i.e.,

1 _
Fiti = 3 F(Qi) + [(Qiy1) — PZ-+11/2|P¢+1/2Az‘+1/2\(Qi+1 — Qi)

Here P is a chosen preconditioned matrix which scales sound
speed as seen before

In essence, original conservation law (6) is modified by

atQ+ Pamf(Q) - 0



Preconditioned system & scheme

To obtain desire asymptotic behavior of computed pressure in
form (13), preconditioned dissipation is proposed, i.e.,

1 _
Fiti = 3 F(Qi) + [(Qiy1) — PZ-+11/2|P¢+1/2Az‘+1/2\(Qi+1 — Qi)

Here P is a chosen preconditioned matrix which scales sound
speed as seen before

In essence, original conservation law (6) is modified by

atQ+ Pamf(Q) - 0

This is work ongoing; we next discuss pressure-based scheme



Pressure-based method: Primitive case

Non-conservative formulation: Yabe & coworkers

@ Write Euler's equations in non-conservative form

Qg +1-Vq=1(q)
= T
q=[p, @ p]
) = [—pV~ﬁ, —%Vp, —chV-ﬁ}T

@ Perform non-advection step first to solve

oiq = ¥ (q)

@ Perform advection step next to solve

dq+u-Vqg=0



Pressure-based method: Primitive case

In non-advection step, say in 2D, we assume Ap & Ae can be
well-approximated by

Ap=p"—p" = —p"At (Dmum'l + Dyvn+1)

Ae =" — e = —i—nAt (Dxun+1 + DyU”H)

Substituting them into basic thermodynamic relation

Ap=p"T —pt = (g—i) Ap+ (%) Ae, vyielding
P

e

Ap = — (pc®)" At (Du™ + Do)



Pressure-based method: Primitive case

From Dt
Ay =yt gy = 22 Ay
p"l
D n+1
Av =" — " = P At
pTL

Substituting u™*! & v"*! into

Ap = — (pCZ)n At (Dxu"H + Dyvn—H) )

yielding Helmholtz equation for p"*! as

Dm n+1 D n+1
o (250 (57)-
P P

pn—i-l _p 1
L_—F L (Du"+ Dy
(o(ane T A P D)




Pressure-based method: Conservaive form

Conservative formulation: Xiao, Sussman, Fedwik, - - -
@ Use Euler's equations in conservation form

O+ V- fq) =¥(q)

¢=[p. pi, pE]"

fla) = [pii, pi@i, pEid]"

v=1[0, =Vp, =V-(pi)]"
@ Perform colorred advection step first to solve

oq+V - flq)=0

@ Perform non-advection step next to solve

0iq = ¥ (q)



Pressure-based method: Conservaive form

First, update advection terms of conserved variables
Pt =" = ALV - (pid)"
(pﬁ)”Jrl = (pa)" — AtV - (pi @ u)" — AtVp
E™ = E" — AtV - (Ba)" — AtV - (pa)" ™!

Non-advection momentum & energy updates are
(pﬁ)n"H — (pﬁ)* - Atvpn—l—l

Ertl — B — A+V - (pﬁ)"“, yielding also
Vpn-i—l)

pn—i-l

V-J’L“:V-J*—Atv-(



Pressure-based method: Conservaive form

V - @™ =0 in case of incompressible flow, here it follows
(pe+ - Vp)" = = (p*)" V-t

approximately or

+ (@ Vp)" ~ — (pc®)" V@t

This leads to Helmholtz equation for pressure

vpn—f—l
pn—i-l

P — (pP) ALV - ( ) = p" —(pc®)"AtV -u*, where

pt=p"+ At (a" - Vp")



Pressure-based method: Conservaive form

V - @™ =0 in case of incompressible flow, here it follows
(pe+ - Vp)" = = (p*)" V-t

approximately or

+ (@ Vp)" ~ — (pc®)" V@t

This leads to Helmholtz equation for pressure

vpn—f—l
pn—i-l

P — (pP) ALV - ( ) = p" —(pc®)"AtV -u*, where

pt=p"+ At (a" - Vp")

We next move to 2-phase flow case



Compressible 2-phase flow: Mathematical Models

In this talk, our interest is on following class of model for
compressible 2-phase flow

1. T-equation model (Baer-Nunziato type)
2. Reduced 5-equation model (Kapila type)

3. Homogeneous 6-equation model
o Saurel et al. (JCP 2009), Pelanti & Shyue (JCP 2014)



Homogeneous 2-phase flow model: Barotropic case

One simple homogeneous (1 velocity, 1 pressure) model for
barotropic 2-phase flow is

8t (Oélpl) + V. (Oélplﬁ) =0
O (azp2) +V - (agpaii) = 0
O (pi)+V - (pi@u) +Vp=0

Assume constitutive law for each fluid phase satisfies
pe )
i (or) = Ak <—) — By, (Tait equation of state)
Pok
Equilibrium pressure p = p; = py follows saturation relation

Q01 QP2
o]+ g = ——~ =

p(p)  pa(p)
yielding nonlinear algebraic equation to be solved




Homogeneous 2-phase flow model: Sound speed

Model is hyperbolic with equilibrium sound speed c,:

(03] (6)

2 2 2
pcy pict - pacy

10°} 2-phase (air-water) | Non-monotonic ¢,
leads to stiffness
in equations &
difficulties in
numerical solver,

10° e.g., positivity-
preserving in
volume fraction &
0.6 018

0 02 04 1 pressure
Qlyater




Homogeneous relaxation model: Barotropic case

Numerically, it is more stable to consider relaxation model
O (a1p1) + V- (agp) =0
O (azp2) + V- (agpati) = 0
O (pl) + V- (pu @ W) + V (aup1 + aope) =0
Oray + 1 - Vay = 1 (p1 — p2)

Write model in compact form as
g+ V- f(q) +w(g, Vg) = ¥u(q)

Compute approximate solution based on fractional step:
1. Homogeneous hyperbolic step

g+ V- flq) +w(q,Vq) =0

2. Source-term relaxation step as parameter ;1 — oo

Orq = 1%(@) = DN (a;pl) — D2 ( Cap2 ) =0

1 11—y




Homogeneous relaxation model: Hyperbolic step

Sound speed in hyperbolic step, denoted by ¢/, is

2
pct = Z U PrCh (frozen speed)
k=1

which satisfies sub-characteristic condition ¢, < ¢

—e—frozen

—p relax Monotonic ¢
gives better
g;lo ] conditioning of
3 hyperbolic step,
o@lozk J but is less efficient
‘ due to CFL
: time-step
10" ‘ : : constraint
0 0.2 0.4 0.6 0.8 1

Qlyyater



Homogeneous relaxation model: Frozen sound

speed

akpk:) _ paxdpy — arprdp
p p?

d
:%(dpk_@dp):o . d _
P P dp p



Homogeneous relaxation model: Asymptotics

Take formal asymptotic expansion ansatz of solution
q:q0+gql+...
Derive equilibrium equation for ¢" as = 1/e — oo (¢ — 0T)

Recall material derivative as

We find
DOél 1
Dt = g (pl —p2)

Dpk:akaPk:g%:_i %—f-apv-ﬁ
Dt~ dp. Dt "Dt a, \PFTD T ORPE

D 2 )

Din | og. g ek Do

—
Dt Q. Dt



Homogeneous relaxation model: Asymptotics

Substituting asymptotic expansions to equations, we get

D (o +eal o) = L (0= ) + (= ph) -
Dﬂt(pg+6p,1€+--~)+<p2622—|—6p,1€c,1:+~-~>V~11’:
(AR +epiey +---\ D
( ol +eal - pr lerteat )

Collecting equal power of ¢, we have

O(l/e)  pl=py=p°

D 0 .02 DaP
0(1)  TE 4RIV iT= - (pkck e

al Dt




Homogeneous relaxation model: Asymptotics

Do . oco2
= L NEVa=- (pl o | (P —13)

Dt o
Dpj 0,02 - chgz 1 1
E+P2C2 V-u=-— ! (p2_p1)
Subtracting former two equations & with p{ = pj, we find
0 .02 002
2 2 o pP1€ PoC
(e - ) o= (A A
ay 3

ie.,

0 0,02 0,02
Daj 1 1 _ P2Cy — P1C1 Vi
_pl _p2 - 0 .02 0 0 .02 0 U
plel Jal + pacy [ag



Homogeneous equilibrium model

Ignore superscript 0 to simplify notation

In summary, as © — oo leading order approximation of
homogeneous relaxation model (HRM) gives so-called
homogeneous equilibrium model (HEM) & takes

8t (alpl) + V- (Oélpll_[) =0
O; (azp2) + V- (appati) = 0
O (pi) + V- (pi @ @) + Vp =0

2 2
- P26 — P16 S,
Oy +u-Voz:( )V-u,
o ' pici/an + pac3 /s

Mixture pressure p = ayp; + apo

p1 — p2 means p approaches towards mechanical equilibrium



Homogeneous equilibrium model: Volume fraction

Volume-fraction equation is differential form of pressure
equilibrium condition p; (p1) = p2 (p2)

Denote K = (pac3 — p1ci) / (prci/on + pac/ o).
Assume K < 0, i.e., pach < p1c? (phase 1 less compressible)

1. Compaction effect (K V -4 > 0)
o increases when V - i < 0 (compression or shock waves)

2. Relaxation effect (K V - @ < 0)
a decreases when V - @ > 0 (expansion waves)

3. No effect
oy remains unchanged when V - 4 = 0 (contacts)



Homogeneous equilibrium model: Sound speed

Sound speed in HEM can be derived easily as

Dp — 3Dpr 5p1 Dy
s =2 — 012V -
Dt = Dr o, Dp AVl
Dp D
D I L

pcE Dt Dt
Analogously, we have

as Dp  Das

mdDi - br eVl

Adding together leads to
D D
< A ) p (041 + 042) (Oél + Oég) V-u
p2C3

p1c? Dt Dt

D . 1 « « 1
— —p:—pcV-u, —22—12+—22:—2

Dt pc picy p2cy PG



Pressure correction scheme: Primitive HRM

Begin with Mach-uniform approach for HRM in primitive form

O (anpr) + 4 -V (p1) = —aypV -
O (agps) + U -V (gpa) = —agpaV - U

Ovaq +1-Vag = pu(p1 — p2)

Split model into advection part & non-advection part

O (anpr) + 1 -V (cupr)
O (azp2) + 1 - V (agpz)
QT+ Vi=0 i = =Vp/p+g
Oy +u-Vay =0 den = 11 (p1 — p2)

0 0t (qul) = —Oélp1V'ﬁ
0 at (Oégpg) = —a2p2V U



Pressure correction scheme: Primitive HRM

1. Hyperbolic predictor step

Solve advection-part equations with fluid-velocity CFL
max; |u;| At 1
V= ————
Ax .

yielding intermediate state, denoted by *  (easy)
2. Helmholtz corrector step
Discretize non-advection part equations semi-implicitly
(1p)"™ ' = (aapr)” — At (aupy)* V- @t
(04202)n+1 = (Q9p2)” — At (agpy)" V- "
@t =@ — At VU pt + Atg

3. Relaxation step

Solve for o' as y — oo, i.e., root-finding

p1 [(ap)™™ /o] = po [(02p2)™ /(1= af )] =0



Pressure correction: Helmholtz corrector step

In step 2, to derive Helmholtz equation for pressure p, we begin
Aip = (9pp) (Orp) = ¢ (Dup)
Consistent with semi-discretized scheme for density, propose
P = pr — At (ch)*V TR

Substituting V - @ in above with

n+1
v-m“:v-a*—mv-(vp )

p*

obtained by applying divergence to momentum equation gives

Vpn+l 1
. H>|< o AIL . - - n+l %
v v < p* ) At (pc?)” (v 2

equation of Helmholtz-type for pressure p™*!



Pressure correction: Helmholtz corrector step

Discretization of Helmholtz equation

c. vpn-i-l B pn—i-l B V . a** B p*
p* (At)2(pe2) At (A2 (pe?)”

@ Suppose, in step 1, finite-volume method is being used,
yielding cell-average data for Helmholtz equation

@ Suppose pressure p is defined as point-wise value at
cell-edge (staggered grid approach)

@ Employ standard 2nd or 4th order finite-difference
approximation to Helmholtz equation, yielding (sparse)
linear system to be solved for pressure



Pressure correction: Helmholtz corrector step

After Helmholtz solve, continue

@ Phasic density update

(Olkpk)n-H = (Oékpk)* - exp (—AtV . Q—[n—i-l)

where divergence of velocity field is

1
S (" )

V-l
! At(pc?)

@ Velocity update

vpn—f—l

Sn41 ok
=u At pn-i-l

where p"*1 = (a1p1)"*! + (agp)™



Pressure correction scheme: Conservative HRM

PC-based scheme in conservative formulation assumes

advection part non-advection part

O (apr) + V- (agpd) =0 Oy (a1p1) =0

O (aap2) + V- (qppati) = 0 O (agpa) =0

O (pu) + V- (U@ u) =0 0 (pti) = =Vp+ pg
0oy +1U-Vaog =0 Oy = p(p1 — p2)

@ Apply fractional step method as usual

@ Take attentions to ensure method conservative in each
step



Future perspectives

6-equation single-velocity 2-phase model with stiff mechanical,
thermal, & chemical relaxations reads

O (a1pr) + V- (agpt) =1

Oy (agpo) + V - (agpotl) = —1in

O(pi) + V- (pd @ ©) + V (c1p1 + aap2) =0

O (a1 Ey) + V- (an Evii + aapri) + B (¢, Vq) =
ppr (p2 — p1) + Q + erm

O (aEy) + V - (qa EBati + copyti) — B (g, Vq) =
ppr (p1 — p2) — Q — erm

. Q m
Oy + - Vo = p(pr —p2) + — + —
qr Pr

B (¢, Vq) is non-conservative product (¢: state vector)

B=1a- V1V (aaps) — YaV (aupy)]



Phase transition model: 6-equation

i, 0, v — oo: instantaneous exchanges (relaxation effects)

1. Volume transfer via pressure relaxation: 1 (p; — p2)

o [ expresses rate toward mechanical equilibrium p; — po,
& is nonzero in all flow regimes of interest

2. Heat transfer via temperature relaxation: 6 (7, — 1)

o 0 expresses rate towards thermal equilibrium 77 — 15,

3. Mass transfer via thermo-chemical relaxation: v (g2 — ¢1)

o v expresses rate towards diffusive equilibrium g — g9, &
is nonzero only at 2-phase mixture & metastable state
Tiiquid > Tsat



Expansion wave problem: Cavitation test

Saurel et al. (JFM 2008) & Zein et al. (JCP 2010):

o Liquid-vapor mixture ((yapor = 1072) for water with

Pliquid = Pvapor = 1bar
th|IqUId — Tvapor - 3547284K < TSat

Pvapor = 063kg/m3> pxs/aatpora Pliquid = 115Okg/m3> plsiiltuid
sat

g > Gvapor > Jliquid

@ Outgoing velocity © = 2m/s

< Membrane

— —u u —




Expansion wave problem: Sample solution

Density (log(kg/m®)) Velocity (m/s) Pressure (log(bar))

2
7
6.95
6.9
6.85
6.8
16.75 -
6.7

Vapor mass fraction (1 OGJ/kg

0. Cavitation
008 pocket

008 formation &
008 mass

Loz transfer

o




Expansion wave problem: Sample solution

Density (kg/mS)

\ Velocity (m/s) i Pressure(bar)
10 10 —-t=0
—t=3.2ms
10
---t=0
Ll=tzsms 10
0 0.2 04 0.6 0.8 0 0.2 0.4 0.6 08
10 Vapor mass fraction — g; (J/kg) . .
1t : Equilibrium
1 oll—t=3.2ms o e .
i Gibbs free
8
energy
6| . .
) inside
o , cavitation
02

pocket




Expansion wave problem: Phase diagram

Solution remains in 2-phase mixture; phase separation has not
reached

Liquid 2-phase mixture

-




Expansion wave @ = 500m/s: Phase diagram

With faster @ = 500m /s, phase separation becomes more
evident

10"

10°F

Liquid 2-phase mixture

10'F

Saturation curve —

10° .
10" 10° 107 10" 10° 10* 10°




Expansion wave @ = 500m/s: Sample solution

Density (kg/m?’) Velocity (m/s) Pressure(bar)
10* — - 10° ——
—1=0.58ms — t=0.58ms
10° |
10°
0 10°

10!
10° ‘

_|=—t=058ms | |
10 10

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1

Vapor mass fraction (1ot Ccolorblue gy — g; (J/kg) e

o= : Equilibrium
0.14ll—t=0.58ms .
oi2 Gibbs free
o energy
0.08 . .
008 inside
o0 cavitation
0.0

o pocket

0 02 04 06 08 1% 02 04 06 08 1



Dodecane 2-phase Riemann problem

Saurel et al. (JFM 2008) & Zein et al. (JCP 2010):
@ Liquid phase: Left-hand side (0 < z < 0.75m)

(pvs p1s 1, p, ), = (2kg/m®, 500kg/m’, 0, 10°Pa, 10°%)
@ Vapor phase: Right-hand side (0.75m < z < 1m)

(pvs P11, D, 00) p = (2kg/m®, 500kg/m’, 0, 10°Pa, 1 —10°)

< Membrane

Liquid Vapor




Dodecane 2-phase problem: Phase diagram

10°

10'F

10°F

10°F

10'E Liquid

10°E 2-phase mixture

10°F Saturation curve —

10 L
10" 10° 107 10" 10° 10* 10° 10°




Dodecane 2-phase problem: Phase diagram

Wave path in p-v phase diagram

10't  Isentrope

e Hugoniot locus
L]

10'k Liquid
10°E 2-phase mixture

10°F Saturation curve —

10 L
10" 10° 107 10" 10° 10* 10° 10°




Dodecane 2-phase problem: Sample solution

Density (kg/mS) Velocity (m/s) Pressure(bar)
10° 50 10°
---t=0 ---t=0
300 —t=473ps —t=473us
250 10°
10°
200
150 10°
10 100
50 10°
=0 0
o|[——t=473us 4
0 0 0.2 04 0.6 0.8 1 7500 0.2 0.4 0.6 0.8 1 10 0 0.2 0.4 0.6 08 1
Vapor volume fraction Vapor mass fraction
1 T 1 T
0 : —=o ! 4-wave
—t=473us. ! —t=473ys !
o8 | o8 | structure:
0.| 0.6| RarefaCtIOn,
0.4 0.4 p h ase ’
! 1 contact, &
shock




Dodecane 2-phase problem: Sample solution

Density (log(kg/m®)) Velocity (m/s) Pressure (log(bar))

6
5
. \4
3
2
1

Vapor volume fraction Vapor mass fraction

All physical
0.8 0.8 quantities
0 0s are discon-
tinuous
across phase
fHoz2 02
boundary




High-pressure fuel injector

With thermo-chemical relaxation

Vapor volume fraction

'o.a
06
0.4
0.2
Vapor mass fraction
'0.6
0.4
0.2
Mixture density
500
400
imu

Mixture pressure

-

Vapor temperature

T
500

No thermo-chemical relaxation
Vapor volume fraction

Vapor mass fraction

Mixture density

Mixture pressure x10

Vapor temperature




Thank you



